Terroir 2008 banner
IVES 9 IVES Conference Series 9 Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

Abstract

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found. Effects of different terroir on the aroma profiles in must of “Sangiovese” grapes were investigated in two Tuscany areas to study the relationship genotype/environment. Grape volatile compounds are the main contributor to the fresh and fruity note in wines. Compounds responsible for this aroma are different depending on the cultural practices and climatic or biological factors and grape volatile composition can greatly vary during ripening. Volatile compounds of grapes are generally present in trace amounts and we used a SPME method to determine aroma composition of “Sangiovese” grapes at different times during ripening and at harvest date. For a full understanding of the process, we also described by agronomic and phenological index the ripening of “Sangiovese” in these two different areas, as well as weather data.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Maurizio BOSELLI (1), Manuel DI VECCHI STARAZ (1), Laura PIERAGNOLI (2), Lidia CESERI (2), Marzia MIGLIORINI (3),Paolo VITI (3)

(1) Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università di Verona, Villa Lebrecht, Via della Pieve, 70 – 37029 San Floriano, Italy
(2) Dipartimento di Ortoflorofrutticoltura, Università di Firenze, Viale delle Idee, 30 – 50019 Sesto Fiorentino, Italy
(3) Laboratorio Chimico Merceologico – Azienda Speciale della Camera di Commercio di Firenze, via Orcagna, 70 – 50121 Firenze, Italy

Contact the author

Keywords

 profil aromatique, SPME, génotype/environnement, Montalcino

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

Preplant fumigation only temporarily reduces Northern root-knot nematode

Management of plant-parasitic nematodes is typically focused on preplant fumigation, especially in a vineyard replant scenario. While the data are clear that this practice reduces nematodes immediately after application, which is useful in annually-cropped systems, does it have staying power in perennial cropping systems? The northern root-knot nematode Meloidogyne hapla reduces the overall lifespan and productivity of vineyards, but it does so over a long time period (slow, chronic decline). In two different commercial own-rooted V. vinifera vineyards, both undergoing vineyard replanting, we explored whether preplant fumigation reduced M. hapla densities in soils immediately after application. At one of these locations, we have explored the long-term effect of fumigation by monitoring the site for seven years post fumigation.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.