Terroir 2008 banner
IVES 9 IVES Conference Series 9 New tools for a visual analysis of vineyard landscapes?

New tools for a visual analysis of vineyard landscapes?

Abstract

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person. 
We try here to analyse more precisely the constitutive forms of vineyard landscapes and their visual perception. We use different complementary methods: 
– plastic and aesthetic landscape analysis, 
– modelling of some parameters like visual accessibility of landscape, 
– analysis of the observer’s attitude and eye tracking. 
Combination of these different analysis tools gives us a better knowledge of vineyard landscapes and their evolutions. It can appear useful for touristic or technical development. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Stéphanie OULES BERTON (1), Vincent BOUVIER (2), Laure CORMIER (2), Jean DUCHESNE (2), Fabienne JOLIET (2)

(1) Confédération des Vignerons du Val de Loire – Institut National d’Horticulture (INH)
(2) Institut National d’Horticulture (INH)
INH – 2 rue Le Nôtre – 49045 Angers cedex 1 – France

Contact the author

Keywords

vineyard landscape, forms, visual perception, plastic analysis, eye tracking 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

Water status response of Vitis vinifera L. cv Cabernet-Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study

Understanding the water-use responses of grapevines to increasing atmospheric carbon dioxide concentrations is mandatory when assessing the impact of climate change on viticulture as it is a critical part of the adaptation process.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.