Terroir 2008 banner
IVES 9 IVES Conference Series 9 New tools for a visual analysis of vineyard landscapes?

New tools for a visual analysis of vineyard landscapes?

Abstract

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person. 
We try here to analyse more precisely the constitutive forms of vineyard landscapes and their visual perception. We use different complementary methods: 
– plastic and aesthetic landscape analysis, 
– modelling of some parameters like visual accessibility of landscape, 
– analysis of the observer’s attitude and eye tracking. 
Combination of these different analysis tools gives us a better knowledge of vineyard landscapes and their evolutions. It can appear useful for touristic or technical development. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Stéphanie OULES BERTON (1), Vincent BOUVIER (2), Laure CORMIER (2), Jean DUCHESNE (2), Fabienne JOLIET (2)

(1) Confédération des Vignerons du Val de Loire – Institut National d’Horticulture (INH)
(2) Institut National d’Horticulture (INH)
INH – 2 rue Le Nôtre – 49045 Angers cedex 1 – France

Contact the author

Keywords

vineyard landscape, forms, visual perception, plastic analysis, eye tracking 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.