Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 “Terroir” studies in the Côtes du Rhône controlled appellation: from zoning to application

“Terroir” studies in the Côtes du Rhône controlled appellation: from zoning to application

Abstract

This work gives a summary of the most important programmes about viticultural « terroirs », developed on the « Côtes du Rhône » controlled appellation area for about twenty years.
The global plan is organized in 3 stages :
The first one regroups different characterisations of « terroirs » diversity ending at zoning : maps of topography, climatology, geology, soils and landscapes.
The second one includes some experimentations to evaluate the effect of terroirs on vine behaviour and on grape and wine composition. Different vine networks are controlled for several vintages to evaluate vine behaviour of the principal red cultivars of the region.
The third stage groups some actions for professional applications of « terroir » studies at different scales. At scale of cooperative winery, the knowledge of « terroirs » are principally used with the aim of improving the management of harvest selections. The practical actions at regional scale are leaded in order to protect the unique and irreplaceable « terroirs » and landscapes of « Côtes du Rhône ».

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Begoña RODRIGUEZ-LOVELLE (1) and Francis FABRE (2)

(1) Service technique, Institut Rhodanien, 2260 route du Grès, 84100 Orange, France
(2) Maison des vins, 6 rue des Trois Faucons, 84000 Avignon, France

Contact the author

Keywords

zoning, Côtes du Rhône, cooperative winery, practical application, harvest selection

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.