Terroir 2004 banner
IVES 9 IVES Conference Series 9 A multidisciplinary approach to grapevine zoning G.I.S. technology based: an example of thermal data elaboration

A multidisciplinary approach to grapevine zoning G.I.S. technology based: an example of thermal data elaboration

Abstract

[English version below]

Un grand nombre d’études ont été consacrées à l’évaluation quantitative des effets de climat sur la qualité des vignes, dans différents contextes climatiques. Généralement, la vocation viticole d’un terroire peut être étudiée par des approches mono ou multidisciplinaires. Les approches viticoles de zonage, laissent augmenter notre connaissance sur la complexe réalité des interactions de la vigne avec l’environnement, afin d’évaluer le niveau potentiel de qualité du raisin.
Dans cette étude nous suggérons une approche multidisciplinaire au zonage, basée sur la tecnologie G.I.S. (system geographique informatisé). La méthode permet nombreuse combinaisons possibles des informations, par exemple: des données climatiques (température de l’air, précipitations, direction du vent, rayonnement global et direct), avec les informations de la vigne (les exigences de chaleur nécessaires pour obtenir un niveau de maturation du raisin, de l’evapotranspiration potentiel quotidien), ou les informations de sol (pente, géologie, topographie), afin d’analyser leurs corrélations.
La méthode peut considérer différentes approches préliminaires à l’élaboration de données sur la base du type de données (par exemple: un facteur climatique) considéré. Dans le présent contribuez un exemple de l’élaboration thermique de données (température de l’air), combinée avec l’information dérivée des besoins de chaleur d’un groupe de 22 varietees est présenté, sur la base d’une expérience conduite dans un secteur de la province de Bénévent (Campania, Italie méridionale).
Dans l’exemple proposé, lesdites informations thermiques avec l’index bio-climatique d’Amerine-Winkler, laissant obtenir une subdivision du terroir considéré dans cinq secteurs, accordant leur convenance thermique (de moins de 1200 à 2000 degrées-jours). Selon le modèle, il était possible d’élaborer une carte de la convenance thermique des varietees considérées, étant possible d’avoir un placement optimal des vignes dans les diverses zones du terroire considéré.

A large number of studies have been devoted to the quantitative assessment of the climate effects upon the quality of vineyards in many different climatic contexts. Generally the grapevine vocation of a territory may be studied through mono or multidisciplinary approaches.
Viticultural zoning approaches permit to increase our knowledge on the complex reality among grapevine and environment interactions, in order to evaluate the potentiality of an area necessary to obtain a data level of grape quality.
In this study we will to suggest a multidisciplinary approach to zoning, G.I.S.-technology-based. The presented method permit possible combinations of “information layers”, for example: climatic data (air temperature, rainfalls, wind direction and velocity, global and direct radiation), with grapevine informations (thermal needs necessary to obtain a data maturation level of the grape, daily potential evapotranspiration), or soil informations (slope, geology, topography), in order to analyse their correlations. According the method, is possible to present the obtained results clearly on builted computer maps. The method may consider different preliminary approaches to the data elaboration (maked with a specific computer program) on the basis of the type of data (for example: a climatic factor) considered.
In the present contribute an example of thermal data elaboration (air temperature) combined with the information derived from the heat requirements of a group of 22 grapevines is presented, on the basis of an experience conducted in an area of the province of Benevento (Campania region, southern Italy). In the proposed example, the method combine the said thermal informations with the Amerine–Winkler bioclimatic index, permitting to obtain a subdivision of the considered territory in five areas, according their thermal suitability (from less than 1200 to 2000 degree-days).
Through the model it was possible to elaborate a map of the thermal suitability of the considered grapevines, being possible to have an optimal placing of the grapevines in the various zones of the considere
d territory.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

G. Scaglione, C. Pasquarella, P.Manna, A. Bonfante

Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli
“Federico II”. Address for contacts: Via Alessandro Scarlatti 110, 80127 Napoli (Italia)
Dipartimento di Scienze del Suolo, Pianta, Ambiente. Università degli Studi di Napoli “Federico II”. Via Università 100, 80055 Portici (Napoli) Italia

Contact the author

Keywords

zonage viticole, climat, exigence thermique
viticultural zoning, climate, thermal needs

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard.

Inactivated yeasts: a case study for the future of precision enology

Yeasts serve as highly versatile tools in oenology. They do more than just perform alcoholic fermentation. Nowadays, yeasts from various species, naturally present in grapes, are selected for specific non-fermentative applications. For example, the use of selected non-saccharomyces at the early stage of winemaking has become a common practice to limit the growth of unwanted microorganisms. When inactivated, yeasts can be fractionated into soluble and insoluble fractions providing a wide range of benefits related to structural components or specific metabolites.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.