Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of molecular ecophysiology in terroir expression

The role of molecular ecophysiology in terroir expression

Abstract

Terroir is a complex concept which associates soil, climate, grape variety and cultural practices that include the training system and oenological techniques. It is a type of social construction with man at its centre. The typicality of a wine is also a social construction which is the result of an agreement among specialists vis à vis a given quality of the wine whose references are the wine’s origins (e.g. terroir) and taste. The wines’ ‘origins’ refer both to its physical place of origin and to a historical continuity. Taste results from the interaction of several factors. The blending of wines from several different grape varieties grown either in the same terroir or in different terroirs in order to arrive at a ‘typical’ wine, identifiable as such by specialists or even the consumer illustrates the degree of complexity of the terroir concept and of the identification of typicality.
In the context of a molecular approach to viticultural terroirs associated with physiological and biochemical approaches, one of our current major priorities is to develop a deeper understanding of the influence of certain primary environmental factors (water and temperature) in conjunction with vine architecture (training system, plant bunch micro-climate) on the development and maturation of grapeberries.
The mechanisms that enable the vine to elicit an appropriate response to a given environmental signal depend on the ability of the grape variety in question to detect and decode the applied stimulus in order to activate the appropriate genetic stimuli. Molecular biology techniques that are used to dissect the regulatory networks activated when a grape variety is exposed to different stresses involve the identification and functional characterisation of so-called ‘initiator’ or ‘early-response’ genes. Activation of the genes that code for proteins involved in signal pathways and the regulation of genetic expression, results in the activation of so-called ‘secondary response’ genes that are responsible for the vine’s ability to adapt to its environment. New data obtained on the role of these genes in integrated approaches would appear to be of fundamental importance and opens the way to applied solutions, such as the treatment of vines with elicitor-type molecules or the development of genetically modified organisms

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Alain Deloire (1) and Isabelle Gaillard (2)

(1) AGRO Montpellier, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1
(2) INRA, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found.

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.

Vine growing description of Aeolian archipelago

An agroclimatic description of Aeolian archipelago viticulture area (Me), Italy is presented. Aeolian archipelago is located off the northeastern coast of Sicily and it includes the islands of Alicudi, Filicudi, Salina, Panarea, Lipari, Stromboli and Vulcano.

Evaluation of the adaptation of Palomino Fino clones based on their physiological response

Genetic diversity within grapevine cultivars is a fundamental resource for varietal improvement and adaptation to cultivation requirements.

High throughput winter pruning weight estimation based on wood volume evaluation 

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems.
A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform.
The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.