Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of molecular ecophysiology in terroir expression

The role of molecular ecophysiology in terroir expression

Abstract

Terroir is a complex concept which associates soil, climate, grape variety and cultural practices that include the training system and oenological techniques. It is a type of social construction with man at its centre. The typicality of a wine is also a social construction which is the result of an agreement among specialists vis à vis a given quality of the wine whose references are the wine’s origins (e.g. terroir) and taste. The wines’ ‘origins’ refer both to its physical place of origin and to a historical continuity. Taste results from the interaction of several factors. The blending of wines from several different grape varieties grown either in the same terroir or in different terroirs in order to arrive at a ‘typical’ wine, identifiable as such by specialists or even the consumer illustrates the degree of complexity of the terroir concept and of the identification of typicality.
In the context of a molecular approach to viticultural terroirs associated with physiological and biochemical approaches, one of our current major priorities is to develop a deeper understanding of the influence of certain primary environmental factors (water and temperature) in conjunction with vine architecture (training system, plant bunch micro-climate) on the development and maturation of grapeberries.
The mechanisms that enable the vine to elicit an appropriate response to a given environmental signal depend on the ability of the grape variety in question to detect and decode the applied stimulus in order to activate the appropriate genetic stimuli. Molecular biology techniques that are used to dissect the regulatory networks activated when a grape variety is exposed to different stresses involve the identification and functional characterisation of so-called ‘initiator’ or ‘early-response’ genes. Activation of the genes that code for proteins involved in signal pathways and the regulation of genetic expression, results in the activation of so-called ‘secondary response’ genes that are responsible for the vine’s ability to adapt to its environment. New data obtained on the role of these genes in integrated approaches would appear to be of fundamental importance and opens the way to applied solutions, such as the treatment of vines with elicitor-type molecules or the development of genetically modified organisms

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Alain Deloire (1) and Isabelle Gaillard (2)

(1) AGRO Montpellier, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1
(2) INRA, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

Influence of the unité de terroir base on the typicity of winesin the AOC Priorat in Tarragona

L’AOC Priorat, située derrière les montagnes du pré littoral de Tarragone, se caractérise par un climat méditerranéen avec une tendance à la continentalité et très peu de précipitation pendant le cycle végétatif. Les sols sont secs, pauvres et caillouteux, formés par des schistes. Au cours des années 2000 et 2001, une étude de l’influence du terroir sur la typicité des vins du Priorat a été réalisée en prenant comme référence trois cépages cultivés dans différentes parceIles pour mesurer l’effet du terroir et du mésoclimat sur la qualité des vins:

Effects of winemaking variables on the chemical and sensory quality of Schiava wines up to one year storage in bottle

The interactive effects of three major enological variables were evaluated on the quality of Schiava wine up to one year of storage in bottle.

Influence of protein stabilization with aspergillopepsin I on wine aroma composition

The protein haze formation in white and rosé wines during storage, shipping and commercialization has always been an important issue for winemakers. Among the various solutions industrially proposed, the use of bentonite is certainly the most widespread. However, the harmful effects of this treatment are known either in terms of wine volume loss and wine flavour and aroma.