Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of molecular ecophysiology in terroir expression

The role of molecular ecophysiology in terroir expression

Abstract

Terroir is a complex concept which associates soil, climate, grape variety and cultural practices that include the training system and oenological techniques. It is a type of social construction with man at its centre. The typicality of a wine is also a social construction which is the result of an agreement among specialists vis à vis a given quality of the wine whose references are the wine’s origins (e.g. terroir) and taste. The wines’ ‘origins’ refer both to its physical place of origin and to a historical continuity. Taste results from the interaction of several factors. The blending of wines from several different grape varieties grown either in the same terroir or in different terroirs in order to arrive at a ‘typical’ wine, identifiable as such by specialists or even the consumer illustrates the degree of complexity of the terroir concept and of the identification of typicality.
In the context of a molecular approach to viticultural terroirs associated with physiological and biochemical approaches, one of our current major priorities is to develop a deeper understanding of the influence of certain primary environmental factors (water and temperature) in conjunction with vine architecture (training system, plant bunch micro-climate) on the development and maturation of grapeberries.
The mechanisms that enable the vine to elicit an appropriate response to a given environmental signal depend on the ability of the grape variety in question to detect and decode the applied stimulus in order to activate the appropriate genetic stimuli. Molecular biology techniques that are used to dissect the regulatory networks activated when a grape variety is exposed to different stresses involve the identification and functional characterisation of so-called ‘initiator’ or ‘early-response’ genes. Activation of the genes that code for proteins involved in signal pathways and the regulation of genetic expression, results in the activation of so-called ‘secondary response’ genes that are responsible for the vine’s ability to adapt to its environment. New data obtained on the role of these genes in integrated approaches would appear to be of fundamental importance and opens the way to applied solutions, such as the treatment of vines with elicitor-type molecules or the development of genetically modified organisms

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Alain Deloire (1) and Isabelle Gaillard (2)

(1) AGRO Montpellier, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1
(2) INRA, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un modèle du microclimat intégrant température, relief, éclairement et pluviométrie a été conçu.

Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

AIM: Grape flavanols are involved in wine quality markers such as in-mouth sensations and colour stability.

Climate regionalization of Uruguayan viticulture for ecological sustainability

Ecological sustainability refers to developing viticulture in adequate environmental conditions.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.