Terroir 1996 banner
IVES 9 IVES Conference Series 9 Balearic varieties of grapevine: study of genetic variability in the response to water stress

Balearic varieties of grapevine: study of genetic variability in the response to water stress

Abstract

The photosynthetic characteristics of twenty varieties of grapevine (Vitis vinifera L.) from Mallorca (Balearic Islands, Spain) and two widespread varieties, Cabernet Sauvignon and Chardonnay were studied under irrigation as well as in response to drought. Despite of the common origin of these cultivars, high variability was found for several photosynthetic characteristics under irrigation.
Interestingly, these variations were significant in gas-exchange parameters (net CO2 assimilation, stomatal conductance and intrinsic water use efficiency). Some varieties presented high carbon assimilation at high water loses’ expense, whereas others were water-saving even under irrigation, which was accompanied by low CO2 assimilation. Escursach was found to be an interesting variety, presenting high carbon assimilation at time with low water consume.These varieties also showed different responses to drought, which allowed to classify them in two main groups: “alarmist” varieties, which showed strong reductions of stomatal conductance in response to relatively low decreases of leaf water potential, and “luxurious” water consume varieties, showing low reductions of stomatal conductance under water stress.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

J. BOTA, J. FLEXAS, B. SAMPOL, H. MEDRANO

Institut Mediterrani d’Estudis Avançats (CSICU​IB). Departament de Biologia Ambiental, Universitat de les Illes Balears. Carr. Valldemosa, Km. 7,5; 07071 Palma de Mallorca. Spain

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

A microwave digestion ICP-MS method for grapevine bark elemental profiling

A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS.