Terroir 1996 banner
IVES 9 IVES Conference Series 9 Balearic varieties of grapevine: study of genetic variability in the response to water stress

Balearic varieties of grapevine: study of genetic variability in the response to water stress

Abstract

The photosynthetic characteristics of twenty varieties of grapevine (Vitis vinifera L.) from Mallorca (Balearic Islands, Spain) and two widespread varieties, Cabernet Sauvignon and Chardonnay were studied under irrigation as well as in response to drought. Despite of the common origin of these cultivars, high variability was found for several photosynthetic characteristics under irrigation.
Interestingly, these variations were significant in gas-exchange parameters (net CO2 assimilation, stomatal conductance and intrinsic water use efficiency). Some varieties presented high carbon assimilation at high water loses’ expense, whereas others were water-saving even under irrigation, which was accompanied by low CO2 assimilation. Escursach was found to be an interesting variety, presenting high carbon assimilation at time with low water consume.These varieties also showed different responses to drought, which allowed to classify them in two main groups: “alarmist” varieties, which showed strong reductions of stomatal conductance in response to relatively low decreases of leaf water potential, and “luxurious” water consume varieties, showing low reductions of stomatal conductance under water stress.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

J. BOTA, J. FLEXAS, B. SAMPOL, H. MEDRANO

Institut Mediterrani d’Estudis Avançats (CSICU​IB). Departament de Biologia Ambiental, Universitat de les Illes Balears. Carr. Valldemosa, Km. 7,5; 07071 Palma de Mallorca. Spain

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects.

Exploring between- and within-vineyard variability of “Malvasia di Candia aromatica” vineyards from Colli Piacentini

Several studies demonstrated how climate and soil may be key drivers of variability at different scales.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.