Terroir 1996 banner
IVES 9 IVES Conference Series 9 Cartes thématiques: applications au vignoble champenois

Cartes thématiques: applications au vignoble champenois

Abstract

Quel est l’intérêt des cartes en viticulture? Celles-ci répondent à plusieurs usages.
Formalisation au sein d’un référentiel codifié et normalisé de la connaissance relative au milieu, aux observations biologiques et aux pratiques culturales. Visualisation de la variabilité dans l’espace et dans le temps d’une information territoriale. Pilotage de stratégies d’exploitation ou de filière en intégrant les différentes facettes de la diversité du territoire.
La restitution cartographique des savoirs viticoles apparaît désormais comme un enjeu majeur pour développer une viticulture intégrée compatible avec les exigences de la préservation de l’environnement (DOLÉDEC et al., 1996) (LA VILLE, 1993). Cette perspective est aujourd’hui une réalité accessible grâce aux outils informatiques de traitement de l’informatique géographique : les SIG (Système d’Information Géographique).

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

LAURENT PANIGAI, ANNE-FRANCE DOLÉDEC, DOMINIQUE MONCOMBLE

Comité Interprofessionnel du Vin de Champagne
5, Rue Henri-Martin, 51200 EPERNAY, FRANCE

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found.

Circular viticulture: transforming grapevine waste into sustainable fibers

Annually, around 31.95 million tonnes of grapevine prunings are produced worldwide as agricultural waste.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.