Terroir 1996 banner
IVES 9 IVES Conference Series 9 Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Abstract

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995). Its influence is complexe, because both physical (soil temperature, water uptake) and chemical (nitrogen uptake) soil parameters interfere on vine development and berry ripening.
Vine development, berry ripening and wine quality were studied in Saint-Emilion (Bordeaux area, France), in 1997, in relation to three different soil types:
– G: Gravelly soil
– S: Sandy soil, with a water table in reach of the roots
– C: Heavy clay soil
Three cultivars were compared, Vitis vinifera Cabernet-Sauvignon, Cabernet franc and Merlot. Water uptake, nitrogen uptake and soil temperature were measured to explain the different vine expressions on the nine plots (3 soils x 3 cultivars).

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

CORNELIS VAN LEEUWEN

ENITA de Bordeaux/ Faculté d’Œnologie de Bordeaux
1, Cours du Général de Gaulle 33175, Gradignan

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.