Terroir 1996 banner
IVES 9 IVES Conference Series 9 Observatoire Grenache en Vallée du Rhône: incidence du terroir sur certains précurseurs d’arômes et substances volatiles

Observatoire Grenache en Vallée du Rhône: incidence du terroir sur certains précurseurs d’arômes et substances volatiles

Abstract

As observed in other grape varieties, Red Grenache juice contains low level of volatiles. The main flavor compounds are ” Iock up “as flavorless glycoconjugates which could generate at the wine pH volatile flavorants and constitute the varietal aroma of this cultivar. Red Grenache berries from 5 vineyards of the 1995-1997 vintages were analysed using absorption on resin XAD2, and identification with gas chromatography and mass spectrometry. This paper reports nine volatile aglycons released from glycoconjugates, selected for their sensorial properties using GC-olfactometry. MANOVA and factorial discriminant analysis was used to show the relationships between vintage and vineyard effects and the varietal aromatic potential of the Red Grenache cultivar.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

ORMIERES J.F. (1,2), MASSON G. (1), BAUMES R. (2), BAYONOVE C. (2), LURTON L. (1)

(1) C.I.V.C.R.V.R – Institut Rhôdanien, 2260 Route du Grès, 84100 Orange, France
(2) Laboratoire des Arômes et des Substances Naturelles, IPV-INRA, 2 place Viala, 34060, Montpellier Cedex, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Identification and characterization of polyphenols in fining precipitate

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries.

Towards 2D mapping of gaseous ethanol in the headspace of wine glasses by infrared laser spectrometry

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the chemical space perceived by the consumer in the glass headspace.

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA).

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].