Terroir 1996 banner
IVES 9 IVES Conference Series 9 Observatoire Grenache en Vallée du Rhône: incidence du terroir sur certains précurseurs d’arômes et substances volatiles

Observatoire Grenache en Vallée du Rhône: incidence du terroir sur certains précurseurs d’arômes et substances volatiles

Abstract

As observed in other grape varieties, Red Grenache juice contains low level of volatiles. The main flavor compounds are ” Iock up “as flavorless glycoconjugates which could generate at the wine pH volatile flavorants and constitute the varietal aroma of this cultivar. Red Grenache berries from 5 vineyards of the 1995-1997 vintages were analysed using absorption on resin XAD2, and identification with gas chromatography and mass spectrometry. This paper reports nine volatile aglycons released from glycoconjugates, selected for their sensorial properties using GC-olfactometry. MANOVA and factorial discriminant analysis was used to show the relationships between vintage and vineyard effects and the varietal aromatic potential of the Red Grenache cultivar.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

ORMIERES J.F. (1,2), MASSON G. (1), BAUMES R. (2), BAYONOVE C. (2), LURTON L. (1)

(1) C.I.V.C.R.V.R – Institut Rhôdanien, 2260 Route du Grès, 84100 Orange, France
(2) Laboratoire des Arômes et des Substances Naturelles, IPV-INRA, 2 place Viala, 34060, Montpellier Cedex, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.

Can grapevine intra-varietal genetic variability be a tool for climate change adaptation? A case study at a hot and dry environment

Climate change projections point to an increase of temperatures and changes in rainfall patterns in the mediterranean region.

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.