Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

Abstract

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences. According to them different grape growing areas can be discriminated ; nothern viticultural areas show a distinct yearly variation in must quality than the southern ones. The second scaling deals with spatial and timely variability in a growing region, i.e. topography, soil type and climate. The influences of both categories on must quality will be described subsequently.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

D. HOPPMANN (1), K. SCHALLER (2)

(1) Agrarmeteorologische Beratungs- und Forschungsstelle des Deutschen Wetterdienstes, Kreuzweg 21, D-65366 Geisenheim, Deutschland
(2) Forschungsanstalt Geisenheim, Institut für Biologie, Fachgebiet Bodenkunde und Pflanzenernährung, Postfach 1154, D-65358 Geisenheim, Deutschland

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

Evolution of the appellation of origin concept in the vineyards of Australia

Australia is the seventh largest producer of wine and crushed 1.42 million tonnes of wine grapes in the 2001 vintage.

Effect of potential crop on vine water constraint

It is important to quantify the effect of potential crop on vine water constraint in order to adapt vine-growing consulting and vine management to the Mediterranean climate conditions

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).