Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

Abstract

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences. According to them different grape growing areas can be discriminated ; nothern viticultural areas show a distinct yearly variation in must quality than the southern ones. The second scaling deals with spatial and timely variability in a growing region, i.e. topography, soil type and climate. The influences of both categories on must quality will be described subsequently.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

D. HOPPMANN (1), K. SCHALLER (2)

(1) Agrarmeteorologische Beratungs- und Forschungsstelle des Deutschen Wetterdienstes, Kreuzweg 21, D-65366 Geisenheim, Deutschland
(2) Forschungsanstalt Geisenheim, Institut für Biologie, Fachgebiet Bodenkunde und Pflanzenernährung, Postfach 1154, D-65358 Geisenheim, Deutschland

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.

Soil carbon changes and greenhouse gas emissions in vineyards – Is the 4 per 1000 goal realistic?

In this video recording of the IVES science meeting 2023, Hans Reiner Schultz (Hochschule Geisenheim University, Germany) speaks about soil carbon changes and greenhouse gas emissions in vineyards – is the 4 per 1000 goal realistic?. This presentation is based on an original article accessible for free on OENO One.

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.

A multidisciplinary approach to assess the impact of future drought scenarios on vineyard ecosystems

Drought events can strongly affect grapevine and berry physiology and subsequent wine quality, as widely demonstrated in controlled experiments.

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.