Terroir 1996 banner
IVES 9 IVES Conference Series 9 Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

Abstract

Le terroir offre une grande variabilité de la typicité des vins produits. A la suite de dégustations intégrant plusieurs millésimes, l’analyse factorielle multiple des données sensorielles a fait ressortir un groupe de critères gustatifs contribuant à la notion de “Puissance”, référencé “Puissance et Harmonie”, qui permet de différencier les vins issus de divers terroirs de la Moyenne Vallée de la Loire (Pages et al., 1987). Cette notion fait référence à des données sensorielles regroupant le velouté, l’intensité d’attaque et l’intensité de fin de bouche. Ces critères gustatifs présentent des similitudes importantes avec ceux que l’on accorde aux polyphénols (Asselin et al, 1992). Afin de mieux comprendre l’effet terroir ainsi défini, une analyse détaillée des constituants phénoliques dans les pépins et les pellicules de raisins de Cabernet franc issus de différents terroirs a été réalisée.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

F. BROSSAUD (1), J. RIGAUD (2), VERONIQUE CHEYNIER (2), C. ASSELIN (1), M. MOUTOUNET (2)

(1) I.N.R.A. Unité de Recherches sur la Vigne et le Vin – 42, Rue Georges Morel -BP 57- 49071 Beaucouzé Cedex
(2) I.N.R.A. – I.P. V. Unité de Recherches des Polymères et des Techniques Physico-Chimiques 2, Place Viala – 34060 Montpellier Cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal
agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel.

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation.

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.