Terroir 1996 banner
IVES 9 IVES Conference Series 9 Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

Abstract

Le terroir offre une grande variabilité de la typicité des vins produits. A la suite de dégustations intégrant plusieurs millésimes, l’analyse factorielle multiple des données sensorielles a fait ressortir un groupe de critères gustatifs contribuant à la notion de “Puissance”, référencé “Puissance et Harmonie”, qui permet de différencier les vins issus de divers terroirs de la Moyenne Vallée de la Loire (Pages et al., 1987). Cette notion fait référence à des données sensorielles regroupant le velouté, l’intensité d’attaque et l’intensité de fin de bouche. Ces critères gustatifs présentent des similitudes importantes avec ceux que l’on accorde aux polyphénols (Asselin et al, 1992). Afin de mieux comprendre l’effet terroir ainsi défini, une analyse détaillée des constituants phénoliques dans les pépins et les pellicules de raisins de Cabernet franc issus de différents terroirs a été réalisée.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

F. BROSSAUD (1), J. RIGAUD (2), VERONIQUE CHEYNIER (2), C. ASSELIN (1), M. MOUTOUNET (2)

(1) I.N.R.A. Unité de Recherches sur la Vigne et le Vin – 42, Rue Georges Morel -BP 57- 49071 Beaucouzé Cedex
(2) I.N.R.A. – I.P. V. Unité de Recherches des Polymères et des Techniques Physico-Chimiques 2, Place Viala – 34060 Montpellier Cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

Viticultural landscape: history of a challenging coexistence between grapevines and humans 

Vitis vinifera is the most grown grapevine species, which originated about 6 million years ago in the trans-caucasian area as the ancestral (wild) type v. Vinifera spp. Sylvestris. On the other hand, the human being (homo sapiens) is much younger since he originated about 300.000 years ago in north africa.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.