terclim by ICS banner
IVES 9 IVES Conference Series 9 Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Abstract

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change.  Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Maria Zumkeller, Nazareth Torres, Runze Yu, Alyssa DeVincentis and S. Kaan Kurtural

Department of Viticulture and Enology, University of California, Davis, USA

Contact the author

Keywords

cover crops, tillage, cultivation, climate change, soil health

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

AIM: Red grape varieties are characterized by different phenolic contents (prominently tannins and anthocyanins) found in skins and seeds.

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Observatoire Grenache en Vallée du Rhône: incidence du terroir sur certains précurseurs d’arômes et substances volatiles

As observed in other grape varieties, Red Grenache juice contains low level of volatiles. The main flavor compounds are ” Iock up “as flavorless glycoconjugates which could generate at the wine pH volatile flavorants and constitute the varietal aroma of this cultivar.