terclim by ICS banner
IVES 9 IVES Conference Series 9 Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Abstract

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change.  Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Maria Zumkeller, Nazareth Torres, Runze Yu, Alyssa DeVincentis and S. Kaan Kurtural

Department of Viticulture and Enology, University of California, Davis, USA

Contact the author

Keywords

cover crops, tillage, cultivation, climate change, soil health

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur).

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

Characterization of vine performance using remote sensing tools

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.