WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Abstract

In recent years several strategies have been proposed to cope with the effect of climate change on grape berry quality but only a few studies have dealt with the influence of management practices implemented in the field (e.g. irrigation,summer pruning, etc.), on the evolution of wines over time. 
Three irrigation treatments (I0,I50,I100) and three shoot trimming treatments (T0,T30,T75) were applied to Aglianico grapevines for two consecutive years(2017 and 2018), thus resulting in nine experimental samples, namely T0I0, T0I50, T0I100, T30I0, T30I50, T30I100, T75I0, T75I50, T75I100. The grapes were harvested and vinified separately, the vinifications were standardized and, after stabilization, the wines obtained were bottled and aged in controlled conditions. Apart from base parameters of grapes and wines, the phenolic composition of hydroalcoholic extracts derived from skins, grape seeds and wines were determined just after the end of vinification and after a long bottle aging (4 and 5 years). Likewise, the chromatic characteristics of wines were analysed as well.
Berry soluble solid content and alcohol concentration in wines turned out to be reduced by shoot trimming and deficit irrigationin eitherseason. However, these effects were enhanced in the first year of treatment. Severe shoot trimming treatment induced a significant decrease in the amount of tannins extractable from skin and seeds that reached a reduction of 83% in grapes under severe water deficit and severe shoot trimming in 2017. Both treatments determined a decrease in anthocyanins extractable from grape skins (never above 17%) determining a significant effect also on color intensity and hue in the wines of both the 2017 and 2018 vintages. The vintage drastically influenced the amount of flavanols and tannins but the effect of the trimming treatment was comparable. Although the great production of polymeric pigments over time in all wines, the effect detected on grapes and wines just after fermentation is still evident for color intensity,tannins and vanillin index after bottle aging.
The results obtained in this work showed that, apart from the expected effect on soluble solids of grapes and alcohol content of wines, a strong effect of shoot trimming on tannins and vanillin index was detected. If further confirmed by other experiments, the trimming could be an interesting practice for the production of wines with lower amounts of tannins and, likely, less astringent.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Antonio, Guerriero, Boris, Basile, Alessandro, Mataffo, Antonio, Dente, Martino, Forino, Antonio, Guerriero, Luigi, Picariello, Massimo, Di Renzo, Pasquale, Scognamiglio, Daniela, Strollo, Luigi, Moio, Angelita Gambuti

Presenting author

Antonio, Guerriero – University of Naples Federico II

University of Naples Federico II | Mastroberardino Spa

Contact the author

Keywords

Aglianico, vineyard strategies, climate change, bottle aging, phenolics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

he use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2].

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated.

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.