WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Abstract

In recent years several strategies have been proposed to cope with the effect of climate change on grape berry quality but only a few studies have dealt with the influence of management practices implemented in the field (e.g. irrigation,summer pruning, etc.), on the evolution of wines over time. 
Three irrigation treatments (I0,I50,I100) and three shoot trimming treatments (T0,T30,T75) were applied to Aglianico grapevines for two consecutive years(2017 and 2018), thus resulting in nine experimental samples, namely T0I0, T0I50, T0I100, T30I0, T30I50, T30I100, T75I0, T75I50, T75I100. The grapes were harvested and vinified separately, the vinifications were standardized and, after stabilization, the wines obtained were bottled and aged in controlled conditions. Apart from base parameters of grapes and wines, the phenolic composition of hydroalcoholic extracts derived from skins, grape seeds and wines were determined just after the end of vinification and after a long bottle aging (4 and 5 years). Likewise, the chromatic characteristics of wines were analysed as well.
Berry soluble solid content and alcohol concentration in wines turned out to be reduced by shoot trimming and deficit irrigationin eitherseason. However, these effects were enhanced in the first year of treatment. Severe shoot trimming treatment induced a significant decrease in the amount of tannins extractable from skin and seeds that reached a reduction of 83% in grapes under severe water deficit and severe shoot trimming in 2017. Both treatments determined a decrease in anthocyanins extractable from grape skins (never above 17%) determining a significant effect also on color intensity and hue in the wines of both the 2017 and 2018 vintages. The vintage drastically influenced the amount of flavanols and tannins but the effect of the trimming treatment was comparable. Although the great production of polymeric pigments over time in all wines, the effect detected on grapes and wines just after fermentation is still evident for color intensity,tannins and vanillin index after bottle aging.
The results obtained in this work showed that, apart from the expected effect on soluble solids of grapes and alcohol content of wines, a strong effect of shoot trimming on tannins and vanillin index was detected. If further confirmed by other experiments, the trimming could be an interesting practice for the production of wines with lower amounts of tannins and, likely, less astringent.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Antonio, Guerriero, Boris, Basile, Alessandro, Mataffo, Antonio, Dente, Martino, Forino, Antonio, Guerriero, Luigi, Picariello, Massimo, Di Renzo, Pasquale, Scognamiglio, Daniela, Strollo, Luigi, Moio, Angelita Gambuti

Presenting author

Antonio, Guerriero – University of Naples Federico II

University of Naples Federico II | Mastroberardino Spa

Contact the author

Keywords

Aglianico, vineyard strategies, climate change, bottle aging, phenolics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

LIFE Climawin: impacts, risks and opportunities in the transition to sustainable viticulture

The LIFE Climawin project drives the sustainable transformation of the wine sector in response to climate change through the implementation of an innovative management model applied at the demonstrative winery, Bosque de Matasnos.

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.