WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Abstract

In recent years several strategies have been proposed to cope with the effect of climate change on grape berry quality but only a few studies have dealt with the influence of management practices implemented in the field (e.g. irrigation,summer pruning, etc.), on the evolution of wines over time. 
Three irrigation treatments (I0,I50,I100) and three shoot trimming treatments (T0,T30,T75) were applied to Aglianico grapevines for two consecutive years(2017 and 2018), thus resulting in nine experimental samples, namely T0I0, T0I50, T0I100, T30I0, T30I50, T30I100, T75I0, T75I50, T75I100. The grapes were harvested and vinified separately, the vinifications were standardized and, after stabilization, the wines obtained were bottled and aged in controlled conditions. Apart from base parameters of grapes and wines, the phenolic composition of hydroalcoholic extracts derived from skins, grape seeds and wines were determined just after the end of vinification and after a long bottle aging (4 and 5 years). Likewise, the chromatic characteristics of wines were analysed as well.
Berry soluble solid content and alcohol concentration in wines turned out to be reduced by shoot trimming and deficit irrigationin eitherseason. However, these effects were enhanced in the first year of treatment. Severe shoot trimming treatment induced a significant decrease in the amount of tannins extractable from skin and seeds that reached a reduction of 83% in grapes under severe water deficit and severe shoot trimming in 2017. Both treatments determined a decrease in anthocyanins extractable from grape skins (never above 17%) determining a significant effect also on color intensity and hue in the wines of both the 2017 and 2018 vintages. The vintage drastically influenced the amount of flavanols and tannins but the effect of the trimming treatment was comparable. Although the great production of polymeric pigments over time in all wines, the effect detected on grapes and wines just after fermentation is still evident for color intensity,tannins and vanillin index after bottle aging.
The results obtained in this work showed that, apart from the expected effect on soluble solids of grapes and alcohol content of wines, a strong effect of shoot trimming on tannins and vanillin index was detected. If further confirmed by other experiments, the trimming could be an interesting practice for the production of wines with lower amounts of tannins and, likely, less astringent.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Antonio, Guerriero, Boris, Basile, Alessandro, Mataffo, Antonio, Dente, Martino, Forino, Antonio, Guerriero, Luigi, Picariello, Massimo, Di Renzo, Pasquale, Scognamiglio, Daniela, Strollo, Luigi, Moio, Angelita Gambuti

Presenting author

Antonio, Guerriero – University of Naples Federico II

University of Naples Federico II | Mastroberardino Spa

Contact the author

Keywords

Aglianico, vineyard strategies, climate change, bottle aging, phenolics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Better understanding on the fungal chitosan and derivatives antiseptic effect on Brettanomyces bruxellensis in wine.

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011).

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.