WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Sensory impact of acetaldehyde addition in Syrah red wines

Sensory impact of acetaldehyde addition in Syrah red wines

Abstract

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-molecular-weight compound that can strongly bind sulfur dioxide but also phenolic compounds and amino acids to a lesser extent. Therefore, the sensory perception of a wine is the result of complex interactions between many volatile and non-volatile compounds [3]. Acetaldehyde is no exception to this rule and its perception depends on the wine matrix in which it is found.

In this work, two Syrah red wines with different polyphenol contents, spiked or not with acetaldehyde, were used to study the impact of this compound on olfactory perception. Free acetaldehyde levels (HS-GC-MS) were measured to determine the acetaldehyde combination levels in the spiked wines. A descriptive analysis of the wines was then performed by using a trained sensory panel and a Hierarchical Check All That Apply (HCATA) analysis of the samples with or without acetaldehyde addition. 

Significant differences were observed for both the sensory threshold and acetaldehyde combination for the wines. The results showed that some cited characteristic sensory descriptors (bruised and oxidized apple) varied significantly between the control wines and those with acetaldehyde addition. In the samples with increasing acetaldehyde levels, the cited descriptors were similar and not dependent on the concentration of acetaldehyde addition. Moreover, it was observed that, depending on its concentration, acetaldehyde amplified or hid descriptors. The increase of its concentration also leads to an increase of the frequency of citation of “vegetal” notes. However, its impact differed depending on the wine matrix, especially their polyphenol content.

[1] Wildenradt, H. L., & Singleton, V. L. (1974). The Production of Aldehydes as a Result of Oxidation of Polyphenolic Compounds and its Relation to Wine Aging. American Journal of Enology and Viticulture, 25(2), 119‑126.

[2] Waterhouse, A., Sacks, G., & Jeffery, D. (2016). Understanding Wine Chemistry (Wiley).

[3] Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11(2), 114‑126.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Luca Garcia, Cédrine Perrin, Valérie Nolleau, Teddy Godet, Vincent Farines, François Garcia, Soline Caillé, Cédric Saucier 

Presenting author

Luca Garcia – UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

Acetaldehyde – Red wine – Syrah – Sensory – Polyphenol

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually.

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Ground vs trellis in rootstock cane production fields

Context and purpose of the study. The vine nursery sector is undergoing a transformation to meet growing environmental and sanitary demands.

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process.

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.