WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Sensory impact of acetaldehyde addition in Syrah red wines

Sensory impact of acetaldehyde addition in Syrah red wines

Abstract

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-molecular-weight compound that can strongly bind sulfur dioxide but also phenolic compounds and amino acids to a lesser extent. Therefore, the sensory perception of a wine is the result of complex interactions between many volatile and non-volatile compounds [3]. Acetaldehyde is no exception to this rule and its perception depends on the wine matrix in which it is found.

In this work, two Syrah red wines with different polyphenol contents, spiked or not with acetaldehyde, were used to study the impact of this compound on olfactory perception. Free acetaldehyde levels (HS-GC-MS) were measured to determine the acetaldehyde combination levels in the spiked wines. A descriptive analysis of the wines was then performed by using a trained sensory panel and a Hierarchical Check All That Apply (HCATA) analysis of the samples with or without acetaldehyde addition. 

Significant differences were observed for both the sensory threshold and acetaldehyde combination for the wines. The results showed that some cited characteristic sensory descriptors (bruised and oxidized apple) varied significantly between the control wines and those with acetaldehyde addition. In the samples with increasing acetaldehyde levels, the cited descriptors were similar and not dependent on the concentration of acetaldehyde addition. Moreover, it was observed that, depending on its concentration, acetaldehyde amplified or hid descriptors. The increase of its concentration also leads to an increase of the frequency of citation of “vegetal” notes. However, its impact differed depending on the wine matrix, especially their polyphenol content.

[1] Wildenradt, H. L., & Singleton, V. L. (1974). The Production of Aldehydes as a Result of Oxidation of Polyphenolic Compounds and its Relation to Wine Aging. American Journal of Enology and Viticulture, 25(2), 119‑126.

[2] Waterhouse, A., Sacks, G., & Jeffery, D. (2016). Understanding Wine Chemistry (Wiley).

[3] Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11(2), 114‑126.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Luca Garcia, Cédrine Perrin, Valérie Nolleau, Teddy Godet, Vincent Farines, François Garcia, Soline Caillé, Cédric Saucier 

Presenting author

Luca Garcia – UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

Acetaldehyde – Red wine – Syrah – Sensory – Polyphenol

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.

A Viticultural Terroir in Brazil: Change and continuity

The viticultural terroir at the Serra Gaúcha region, in Rio Grande do Sul State, Brazil, is analyzed under historical and sociological viewpoints, aiming to understand the origin of its characteristics, and the risks for its continuity.

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements.

Advancement of grape maturity – comparison between contrasting varieties and regions

Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier
vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016).