WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Sensory impact of acetaldehyde addition in Syrah red wines

Sensory impact of acetaldehyde addition in Syrah red wines

Abstract

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-molecular-weight compound that can strongly bind sulfur dioxide but also phenolic compounds and amino acids to a lesser extent. Therefore, the sensory perception of a wine is the result of complex interactions between many volatile and non-volatile compounds [3]. Acetaldehyde is no exception to this rule and its perception depends on the wine matrix in which it is found.

In this work, two Syrah red wines with different polyphenol contents, spiked or not with acetaldehyde, were used to study the impact of this compound on olfactory perception. Free acetaldehyde levels (HS-GC-MS) were measured to determine the acetaldehyde combination levels in the spiked wines. A descriptive analysis of the wines was then performed by using a trained sensory panel and a Hierarchical Check All That Apply (HCATA) analysis of the samples with or without acetaldehyde addition. 

Significant differences were observed for both the sensory threshold and acetaldehyde combination for the wines. The results showed that some cited characteristic sensory descriptors (bruised and oxidized apple) varied significantly between the control wines and those with acetaldehyde addition. In the samples with increasing acetaldehyde levels, the cited descriptors were similar and not dependent on the concentration of acetaldehyde addition. Moreover, it was observed that, depending on its concentration, acetaldehyde amplified or hid descriptors. The increase of its concentration also leads to an increase of the frequency of citation of “vegetal” notes. However, its impact differed depending on the wine matrix, especially their polyphenol content.

[1] Wildenradt, H. L., & Singleton, V. L. (1974). The Production of Aldehydes as a Result of Oxidation of Polyphenolic Compounds and its Relation to Wine Aging. American Journal of Enology and Viticulture, 25(2), 119‑126.

[2] Waterhouse, A., Sacks, G., & Jeffery, D. (2016). Understanding Wine Chemistry (Wiley).

[3] Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11(2), 114‑126.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Luca Garcia, Cédrine Perrin, Valérie Nolleau, Teddy Godet, Vincent Farines, François Garcia, Soline Caillé, Cédric Saucier 

Presenting author

Luca Garcia – UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

Acetaldehyde – Red wine – Syrah – Sensory – Polyphenol

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions.

Characterization of vine vigor by ground based NDVI measurements

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex.

Market analysis of Chilean Pinot noir, Carménère, and Cabernet-Sauvignon wines: A comparative study of chemical parameters across low, medium, and high price segments

Wine quality is a complex concept determined by multiple factors, including vineyard management, winemaking operations, and the sensory perception of key attributes.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.