WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Sensory impact of acetaldehyde addition in Syrah red wines

Sensory impact of acetaldehyde addition in Syrah red wines

Abstract

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-molecular-weight compound that can strongly bind sulfur dioxide but also phenolic compounds and amino acids to a lesser extent. Therefore, the sensory perception of a wine is the result of complex interactions between many volatile and non-volatile compounds [3]. Acetaldehyde is no exception to this rule and its perception depends on the wine matrix in which it is found.

In this work, two Syrah red wines with different polyphenol contents, spiked or not with acetaldehyde, were used to study the impact of this compound on olfactory perception. Free acetaldehyde levels (HS-GC-MS) were measured to determine the acetaldehyde combination levels in the spiked wines. A descriptive analysis of the wines was then performed by using a trained sensory panel and a Hierarchical Check All That Apply (HCATA) analysis of the samples with or without acetaldehyde addition. 

Significant differences were observed for both the sensory threshold and acetaldehyde combination for the wines. The results showed that some cited characteristic sensory descriptors (bruised and oxidized apple) varied significantly between the control wines and those with acetaldehyde addition. In the samples with increasing acetaldehyde levels, the cited descriptors were similar and not dependent on the concentration of acetaldehyde addition. Moreover, it was observed that, depending on its concentration, acetaldehyde amplified or hid descriptors. The increase of its concentration also leads to an increase of the frequency of citation of “vegetal” notes. However, its impact differed depending on the wine matrix, especially their polyphenol content.

[1] Wildenradt, H. L., & Singleton, V. L. (1974). The Production of Aldehydes as a Result of Oxidation of Polyphenolic Compounds and its Relation to Wine Aging. American Journal of Enology and Viticulture, 25(2), 119‑126.

[2] Waterhouse, A., Sacks, G., & Jeffery, D. (2016). Understanding Wine Chemistry (Wiley).

[3] Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11(2), 114‑126.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Luca Garcia, Cédrine Perrin, Valérie Nolleau, Teddy Godet, Vincent Farines, François Garcia, Soline Caillé, Cédric Saucier 

Presenting author

Luca Garcia – UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

Acetaldehyde – Red wine – Syrah – Sensory – Polyphenol

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Rapporti tra diverse tipologie di terreno e risposte produttive e qualitative delle uve Merlot e Carmenère nell’area DOC Piave

Da anni la ricerca viticola sta orientando le sue attenzioni verso lo studio della vocazionalità degli ecosistemi viticoli, perché fulcro della produttività della vite e qualità dei suoi frutti.

Winemaking options for the improvement of the attributes of the wines from grapes with different oenological potential and sanitary status

The aim of this work was to study winemaking alternatives that will optimize the quality of the Tannat wines, taking advantage of the grape’s oenological potential.

Analysis of primary, secondary and tertiary aromas in Vitis vinifera L. Syrah wines with an extemporaneous production cycle in two regions of São Paulo – Brazil, using GC-MS

The aromatic perception is one of the main factors that influence the
consumer when determining the wine’s quality and acceptance. Numerous factors (soil, climate,
winemaking style, cultivar) can influence the volatile compounds. Some of these compounds are released directly from the grape berries while others are formed during the fermentation and aging processes. However, little is known about the quality and aromatic formation of Syrah variety in the winter cycle cultivated in São Paulo.

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.