WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Dimethyl sulfide: a compound of interest from grape to wine glass

Dimethyl sulfide: a compound of interest from grape to wine glass

Abstract

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-methylmethionine (SMM) already identified in grapes2,3. During alcoholic fermentation (AF), a part of SMM is degrade by the action of yeast. Hence, the whole of DMSp is not given to the young wine4. However, the presence of DMS in wines in linked with the expression of bouquet typicity of Bordeaux red wines5 and is implicated to aromatic nuances such as “truffle” and “blackberry”6 notes. Also, it can influence the tasting experience to give sensory polymorphism to wines7. Even if DMS seems to be an essential contributor to aged wine aroma, some points have never been explore. This have invited us complete the knowledge on the modulations of the DMS levels from grapes to the wine service. 

Various experiments were set up to answer at our hypotheses. DMSp was measured on many Bordeaux red musts, also during AF and on wines and wine model solution.

We observed the increase of DMSp levels during merlot and cabernet-sauvignon ripening. Even if a difference of accumulation seems to exist between varieties and localization, the real amount of DMSp accumulated is similar between all samples. Among all studied parameters, a link was measured between DMSp and YAN. Then, winemaking process is a key step because DMSp is consumed at the beginning of the AF and consumption depends of the levels of YAN and sometimes the yeast strain. About wine, DMS volatility is modulated by phenolic matrix. Our study highlight a form of DMS linked with grapes tannins. It sensorial impact have been partially studied but the results suggest that during tasting, a progressive release of DMS from a linked form could be implicated in the generation of many sensorial images perceived and contribute to the complexity of wine bouquet. 

1 Peynaud, E., 1980
2 Loscos, N et al., 2008
https://doi.org/10.1016/j.aca.2007.11.033
3 Segurel et al., 2005
https://doi.org/10.1021/jf048273r
4 Dagan, L., 2006
5 Picard, M. et al., 2015
https://doi.org/10.1021/acs.jafc.5b03977
6 Lytra, G. et al., 2014
https://doi.org/10.20870/oeno-one.2014.48.1.1660
7 Lytra, G. et al., 2016
https://doi.org/10.1016/j.foodchem.2015.07.143

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Justine Laboyrie, Marina Bely, Michael Jourdes, Nicolas le Menn, Laurent Riquier, Stéphanie Marchand

Presenting author

Justine Laboyrie – Univ. Bordeaux, INRAE, Bordeaux INP, UR Oenologie, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon, France

Univ. Bordeaux, INRAE, Bordeaux INP, UR Oenologie, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

Bordeaux Red wine ageing bouquet, Dimethyl sulfide, DMSp, YAN, Matrix interaction

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.