WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Dimethyl sulfide: a compound of interest from grape to wine glass

Dimethyl sulfide: a compound of interest from grape to wine glass

Abstract

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-methylmethionine (SMM) already identified in grapes2,3. During alcoholic fermentation (AF), a part of SMM is degrade by the action of yeast. Hence, the whole of DMSp is not given to the young wine4. However, the presence of DMS in wines in linked with the expression of bouquet typicity of Bordeaux red wines5 and is implicated to aromatic nuances such as “truffle” and “blackberry”6 notes. Also, it can influence the tasting experience to give sensory polymorphism to wines7. Even if DMS seems to be an essential contributor to aged wine aroma, some points have never been explore. This have invited us complete the knowledge on the modulations of the DMS levels from grapes to the wine service. 

Various experiments were set up to answer at our hypotheses. DMSp was measured on many Bordeaux red musts, also during AF and on wines and wine model solution.

We observed the increase of DMSp levels during merlot and cabernet-sauvignon ripening. Even if a difference of accumulation seems to exist between varieties and localization, the real amount of DMSp accumulated is similar between all samples. Among all studied parameters, a link was measured between DMSp and YAN. Then, winemaking process is a key step because DMSp is consumed at the beginning of the AF and consumption depends of the levels of YAN and sometimes the yeast strain. About wine, DMS volatility is modulated by phenolic matrix. Our study highlight a form of DMS linked with grapes tannins. It sensorial impact have been partially studied but the results suggest that during tasting, a progressive release of DMS from a linked form could be implicated in the generation of many sensorial images perceived and contribute to the complexity of wine bouquet. 

1 Peynaud, E., 1980
2 Loscos, N et al., 2008
https://doi.org/10.1016/j.aca.2007.11.033
3 Segurel et al., 2005
https://doi.org/10.1021/jf048273r
4 Dagan, L., 2006
5 Picard, M. et al., 2015
https://doi.org/10.1021/acs.jafc.5b03977
6 Lytra, G. et al., 2014
https://doi.org/10.20870/oeno-one.2014.48.1.1660
7 Lytra, G. et al., 2016
https://doi.org/10.1016/j.foodchem.2015.07.143

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Justine Laboyrie, Marina Bely, Michael Jourdes, Nicolas le Menn, Laurent Riquier, Stéphanie Marchand

Presenting author

Justine Laboyrie – Univ. Bordeaux, INRAE, Bordeaux INP, UR Oenologie, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon, France

Univ. Bordeaux, INRAE, Bordeaux INP, UR Oenologie, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

Bordeaux Red wine ageing bouquet, Dimethyl sulfide, DMSp, YAN, Matrix interaction

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.