WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Advances in the chemistry of rosé winemaking and ageing

Advances in the chemistry of rosé winemaking and ageing

Abstract

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines. To investigate the terroir effect, a study on the influence of origin of rosé wine was  performed using semi-targeted polyphenomics. 60 commercial wines from Bordeaux, Languedoc and Provence regions were used as two independent sample and data sets (30 wines each). An original LC-QTOF-MS method and a specific data analysis genetic algorithm gave good discrimination of the wines based on their origin of production [1].

Apart from the origin or terroir of the grapes, winemaking technology plays a crucial role in determining the color and aroma profile of rosé wine, including the widespread use of polyvinylpolypyrrolidone (PVPP) to adjust the color and polyphenol content. The specific adsorption of coumaroylated anthocyanins was greater than that of other anthocyanins [2], and a molecular modelling approach was used to further understand this specific binding affinity. We showed that using PVPP, the thiol aroma content of rosé wine can be increased up to 200 % as compared to the control wines [3]. This might explain the increase in demand for lighter colored rosé wines over the last number of years.

When the desired color and aroma are obtained, a remaining challenge is to understand and predict the sensitivity of rosé wines to oxidation. Accelerated ageing tests based on heat and chemical oxidation are currently under investigation in our laboratory. These tests and mass spectrometry show that the anthocyanins are appropriate biomarkers of chemical ageing in rosé wines.

References

[1] Gil, M., Reynes, C., Cazals, G., Enjalbal, C., Sabatier, R., & Saucier, C. . Scientific reports. 2020, 10(1), 1-7
[2] Gil, M.,  Avila-Salas, F., Santos, L.S.,  Iturmendi, N., Moine, V ., Cheynier, V., Saucier C.  J. Agric.  Food Chem. 2017 65, 10591-10597
[3] Gil, M.,  Louazil,P., Iturmendi, N., Moine, V ., Cheynier, V., Saucier C. Food Chem. 2019, 295, 493-498

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

SAUCIER,  Melodie, Gil, Fabian, Avila, Philippe, Louazil, Guillaume, Cazals, Christine Enjalbal, Arnaud, Massot, Leonardo, Santos, Robert, Sabatier, Virginie, Moine

Presenting author

SAUCIER, Cédric 

SPO, Université de Montpellier, France | Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile | Biolaffort,  Floirac, France | IBMM,University de  Montpellier, France | Biolaffort,  Floirac, France | IGF, University de Montpellier, France | Biolaffort,  Floirac, France

Contact the author

Keywords

Rosé wine, color, polyphenol, PVPP, thiol, oxidation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

Everything else, it’s work ”Socio-cultural dimensions of terroir among Bordeaux winemakers

In 2010, the OIV adopted a resolution that defines ‘terroir’. The OIV definition understands terroir as the result of the interactions between the physical specificities of a space and human labor, with an emphasis on the subsequently produced collective knowledge (OIV-VITI 333-2010); by doing so, it alludes to the social and cultural dimensions of terroir.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Recherche de relations entre terroir et caractéristiques sensorielles des eaux-de-vie de Cognac

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...