WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Advances in the chemistry of rosé winemaking and ageing

Advances in the chemistry of rosé winemaking and ageing

Abstract

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines. To investigate the terroir effect, a study on the influence of origin of rosé wine was  performed using semi-targeted polyphenomics. 60 commercial wines from Bordeaux, Languedoc and Provence regions were used as two independent sample and data sets (30 wines each). An original LC-QTOF-MS method and a specific data analysis genetic algorithm gave good discrimination of the wines based on their origin of production [1].

Apart from the origin or terroir of the grapes, winemaking technology plays a crucial role in determining the color and aroma profile of rosé wine, including the widespread use of polyvinylpolypyrrolidone (PVPP) to adjust the color and polyphenol content. The specific adsorption of coumaroylated anthocyanins was greater than that of other anthocyanins [2], and a molecular modelling approach was used to further understand this specific binding affinity. We showed that using PVPP, the thiol aroma content of rosé wine can be increased up to 200 % as compared to the control wines [3]. This might explain the increase in demand for lighter colored rosé wines over the last number of years.

When the desired color and aroma are obtained, a remaining challenge is to understand and predict the sensitivity of rosé wines to oxidation. Accelerated ageing tests based on heat and chemical oxidation are currently under investigation in our laboratory. These tests and mass spectrometry show that the anthocyanins are appropriate biomarkers of chemical ageing in rosé wines.

References

[1] Gil, M., Reynes, C., Cazals, G., Enjalbal, C., Sabatier, R., & Saucier, C. . Scientific reports. 2020, 10(1), 1-7
[2] Gil, M.,  Avila-Salas, F., Santos, L.S.,  Iturmendi, N., Moine, V ., Cheynier, V., Saucier C.  J. Agric.  Food Chem. 2017 65, 10591-10597
[3] Gil, M.,  Louazil,P., Iturmendi, N., Moine, V ., Cheynier, V., Saucier C. Food Chem. 2019, 295, 493-498

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

SAUCIER,  Melodie, Gil, Fabian, Avila, Philippe, Louazil, Guillaume, Cazals, Christine Enjalbal, Arnaud, Massot, Leonardo, Santos, Robert, Sabatier, Virginie, Moine

Presenting author

SAUCIER, Cédric 

SPO, Université de Montpellier, France | Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile | Biolaffort,  Floirac, France | IBMM,University de  Montpellier, France | Biolaffort,  Floirac, France | IGF, University de Montpellier, France | Biolaffort,  Floirac, France

Contact the author

Keywords

Rosé wine, color, polyphenol, PVPP, thiol, oxidation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence.

Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Gli autori presentano gli ultimi risultati delle ricerche dei DIAF sulla meccanizzazione delle operazioni colorali in zone di difficile accesso e transitabilità quali le aree marginali, i terreni terrazzati e altre realtà agricole caratterizzate da spazi estremamente ristretti (vivaismo, orticoltura, ecc.).

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.