WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Advances in the chemistry of rosé winemaking and ageing

Advances in the chemistry of rosé winemaking and ageing

Abstract

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines. To investigate the terroir effect, a study on the influence of origin of rosé wine was  performed using semi-targeted polyphenomics. 60 commercial wines from Bordeaux, Languedoc and Provence regions were used as two independent sample and data sets (30 wines each). An original LC-QTOF-MS method and a specific data analysis genetic algorithm gave good discrimination of the wines based on their origin of production [1].

Apart from the origin or terroir of the grapes, winemaking technology plays a crucial role in determining the color and aroma profile of rosé wine, including the widespread use of polyvinylpolypyrrolidone (PVPP) to adjust the color and polyphenol content. The specific adsorption of coumaroylated anthocyanins was greater than that of other anthocyanins [2], and a molecular modelling approach was used to further understand this specific binding affinity. We showed that using PVPP, the thiol aroma content of rosé wine can be increased up to 200 % as compared to the control wines [3]. This might explain the increase in demand for lighter colored rosé wines over the last number of years.

When the desired color and aroma are obtained, a remaining challenge is to understand and predict the sensitivity of rosé wines to oxidation. Accelerated ageing tests based on heat and chemical oxidation are currently under investigation in our laboratory. These tests and mass spectrometry show that the anthocyanins are appropriate biomarkers of chemical ageing in rosé wines.

References

[1] Gil, M., Reynes, C., Cazals, G., Enjalbal, C., Sabatier, R., & Saucier, C. . Scientific reports. 2020, 10(1), 1-7
[2] Gil, M.,  Avila-Salas, F., Santos, L.S.,  Iturmendi, N., Moine, V ., Cheynier, V., Saucier C.  J. Agric.  Food Chem. 2017 65, 10591-10597
[3] Gil, M.,  Louazil,P., Iturmendi, N., Moine, V ., Cheynier, V., Saucier C. Food Chem. 2019, 295, 493-498

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

SAUCIER,  Melodie, Gil, Fabian, Avila, Philippe, Louazil, Guillaume, Cazals, Christine Enjalbal, Arnaud, Massot, Leonardo, Santos, Robert, Sabatier, Virginie, Moine

Presenting author

SAUCIER, Cédric 

SPO, Université de Montpellier, France | Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile | Biolaffort,  Floirac, France | IBMM,University de  Montpellier, France | Biolaffort,  Floirac, France | IGF, University de Montpellier, France | Biolaffort,  Floirac, France

Contact the author

Keywords

Rosé wine, color, polyphenol, PVPP, thiol, oxidation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Study of the volatile aroma profile of five Italian grape varieties submitted to controlled postharvest withering

Wines made with grapes submitted to postharvest dehydration are often referred to as “passito” or “straw wines.” This distinct style of winemaking consists of a process of water loss that allows the berries to undergo a mild water stress and senescence process [1].

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions.

Managing nitrogen balance in cover-cropped vineyard

In this audio recording of the IVES science meeting 2022, Thibaut Verdenal (Agroscope, Pully, Switzerland) speaks about managing nitrogen balance in cover-cropped vineyard. This presentation is based on an original article accessible for free on OENO One.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

In vitro tissue culture as a tool for Croatian grapevine germplasm management

In vitro culture makes it possible to carry out specific studies that would not be possible with whole plants grown in the field or in a greenhouse. Cryopreservation allows long-term preservation without metabolic changes in the plant material and cryotherapy can be efficient in virus elimination, which is a major scientific challenge.
The preculture media of cryopreservation protocols were evaluated on three Croatian grape varieties with different antioxidants (salicylic acid, ascorbic acid and glutathione). The highest growth in vitro was achieved on the medium with the addition of glutathione and the lowest with the addition of salicylic acid.