WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Identification and biological properties of new resveratrol derivatives formed in red wine

Identification and biological properties of new resveratrol derivatives formed in red wine

Abstract

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments including new molecules. The presence of these compounds was sought in red wines using an ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC MS/MS). This work confirmed the presence of these compounds in red wines in content comparable to that of resveratrol. Finally, biological properties of these compounds were evaluated in breast cancer and macrophage cell models.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Tristan Richard, Ayoub Jaa, Anne Gutiérrez Sainz,  Josep Valls Fonayet,Stéphanie Krisa, M. Begoña Ruiz-Larrea, José Ignacio Ruiz-Sanz, Tristan Richard

Presenting author

Tristan Richard – Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France

Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940-Leioa, Bizkaia, Spain. UMR 1366, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, UMR OENO, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, FranceINRAE, UR Œnologie, EA 4577, USC 1366, ISVV, 210 Chemin de Leysotte, F 33882 Villenave d’Ornon, France.1Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

resveratrol, oxidative coupling, wine, biological activities

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

A global and regional study on winegrowers’ perceptions and adaptations to climate change

Aim: The aim of this study was to explore the current and future state of the wine sector in the context of climate change, where the goal was to obtain greater understanding on winegrowers’ perceptions and adaptations to a changing climate and its associated impacts. The study sought to provide both a global and regional perspective on these issues.

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

A lower rate of grape berry transpiration delays ripening and reduces flavonoid content

Exposing berries to solar radiation improves most berry composition traits. Many of these effects have been linked to photomorphogenic mechanisms and berry temperature.