WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Abstract

Previous work from our laboratory has shown that both a purified toasted oak powder and extracts made from unoaked and oaked red wines influenced physiological parameters, metabolism and hepatic gene expression in high-fat fed C57/BL6J male mice (Luo et al., 2020).  Impacted pathways included glucose metabolism, liver fat accumulation, markers of chronic inflammation, and expression of the Gsta1 mRNA.  

In the present study, we utilized a novel cell model in a cell culture system, the HepaRG cell line.  These cells more closely resemble isolated human hepatocytes, and in particular, express robust levels of nuclear hormone receptors which may be involved in the sensing of phytochemicals.  We directly exposed HepaRG cells to three mixtures, the toasted oak tannin powder (OT), and two de-alcoholized extracts made from identical red wines fermented and aged in either steel tanks or oak barrels (oaked and unoaked wine concentrates; OWC & UWC).  In addition, other groups of cells were exposed to purified, individual compounds that may either be present in oaked wines or biotransformed by enterocytes of the small intestine:  ellagic acid (EA) and urolithin B (UroB).  OT concentration was 10 mg/L and OWC and UWC was 0.2 mL/L.  EA concentration was 300ug/L and UroB was 200ug/L.  Cells were exposed for a period of 48 hours, after which total RNA was isolated and used to perform ClariomB microarray gene expression analysis.  Data from these analyses is shown as both lists of most up- and down-regulated genes vs. untreated controls; with Venn diagrams to show commonality between different treatments, and upset plot analyses.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Neil F. Shay, Tedd Goldfinger, Ting Luo, Mikayla Chen

Presenting author

Neil F. Shay – Oregon State University

 Desert Heart Foundation | Nanchang University | Oregon State University

Contact the author

Keywords

Nutrition, Gene Expression, Oak, Tannins, Ellagic Acid

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.

Managing local field variability in the framework of precision viticulture

Managing grapevines according to the practices of Precision Agriculture (PA), may prove to be an asset in the hands of the modern grape growers.

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.