WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Abstract

Previous work from our laboratory has shown that both a purified toasted oak powder and extracts made from unoaked and oaked red wines influenced physiological parameters, metabolism and hepatic gene expression in high-fat fed C57/BL6J male mice (Luo et al., 2020).  Impacted pathways included glucose metabolism, liver fat accumulation, markers of chronic inflammation, and expression of the Gsta1 mRNA.  

In the present study, we utilized a novel cell model in a cell culture system, the HepaRG cell line.  These cells more closely resemble isolated human hepatocytes, and in particular, express robust levels of nuclear hormone receptors which may be involved in the sensing of phytochemicals.  We directly exposed HepaRG cells to three mixtures, the toasted oak tannin powder (OT), and two de-alcoholized extracts made from identical red wines fermented and aged in either steel tanks or oak barrels (oaked and unoaked wine concentrates; OWC & UWC).  In addition, other groups of cells were exposed to purified, individual compounds that may either be present in oaked wines or biotransformed by enterocytes of the small intestine:  ellagic acid (EA) and urolithin B (UroB).  OT concentration was 10 mg/L and OWC and UWC was 0.2 mL/L.  EA concentration was 300ug/L and UroB was 200ug/L.  Cells were exposed for a period of 48 hours, after which total RNA was isolated and used to perform ClariomB microarray gene expression analysis.  Data from these analyses is shown as both lists of most up- and down-regulated genes vs. untreated controls; with Venn diagrams to show commonality between different treatments, and upset plot analyses.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Neil F. Shay, Tedd Goldfinger, Ting Luo, Mikayla Chen

Presenting author

Neil F. Shay – Oregon State University

 Desert Heart Foundation | Nanchang University | Oregon State University

Contact the author

Keywords

Nutrition, Gene Expression, Oak, Tannins, Ellagic Acid

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Screening of phenolic compounds and antioxidant potential of grapes, wine and grape by-products

Polyphenols, bioactive secondary metabolites abundantly found in various grapevine components such as stalks, skins, and seeds, have attracted considerable attention in recent decades due to their potential health benefits. These compounds, including flavan-3-ols, flavanols, flavones, and stilbenes, are known for their antioxidant and anti-inflammatory properties.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Developing and assessing different cordon establishment techniques for long-term vineyard management

Aim: The aim of this research is to quantify the impacts of different cordon establishment techniques on vine health and longevity. It is hypothesised that wrapping developing cordon arms tightly around the cordon wire will cause a constriction of the vascular system, becoming worse over time and disrupting the flow of water and nutrients.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.