IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Abstract

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates). Accordingly, the range and magnitude of environmental factors differ considerably from region to region and so do the principal environmental constraints for grape production. Due to climate change, temperature, as the primary factor limiting the suitability for wine production is changing causing shifts in the regional distribution of wine producing areas and bringing “new” cool climate producers to the map and may be putting warmer areas at risk. 

The recent publication of the IPCC report (2021, 2022) will be analysed with respect to regional projections relevant for Viticulture and Oenology across the northern and southern hemisphere. The presentation will examine the climate development of various regions across cooler and warmer grape growing areas, and the potential impact on varietal distribution. As a second major environmental factor, water availability is a constraint in many grape growing areas. But projected changes in precipitation (P) rates are only one part of the equation. Since the water cycle is coupled to temperature because temperature plays a large role in the evaporation of water from surfaces or the transpiration of water through plants (ETp), it is the balance between P and ETp which determines water availability and this balance is changing in different directions in various grape growing regions. 

Both temperature and water availability have known effects on fruit composition. Much more difficult to quantify are effects through, for instance, changes in soils. We observe rising temperatures in the upper soil layers in access to the warming observed for air temperature. This will have an impact on the distribution of microbial populations, the decay rate of organic matter, the supply with nutrients, or the storage capacity for soil organic carbon (SOC), thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. Interactions between micro-organisms in the rhizosphere, the grapevine root system, degradation and fixation of SOC are complex and poorly understood but respond to environmental factors (such as increased soil temperatures), the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional, cover crop use versus open tillage for example). 

It is one of the major challenges in projecting analytical changes in the fruit and wine induced by these complex changes of a viticultural system through climate change aside of the main components sugar and acidity. The rising ambient CO2-concentration itself will also contribute to changes in leaf and fruit biochemistry and the interaction with the environmental factors temperature and water may act synergistically or antagonistically, exacerbating or mitigating effects

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Contact the author

Keywords

climate change and regional impacts, regulation programs, adaptation strategies, grape and wine composition 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.

Gevrey-Chambertin : les enjeux d’un territoire vitivinicole locale à l’échelle mondiale

An emblematic name of the burgundy wine region, a few kilometers from dijon, gevrey-chambertin stands out as a small wine town of international renown in the heart of a prestigious red wine vineyard listed as a unesco world heritage site.

Exploring the inhibitor effect of different commercial chitosan-based preparations on malolactic fermentation in rosé wine

Chitosan is a natural polymer of β-D-linked N-acetyl-D-glucosamine units (1,2), that has only recently been approved by OIV for its use in winemaking to help with microbial control, metal chelation, clarification, and reducing contaminants.

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.