IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Abstract

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates). Accordingly, the range and magnitude of environmental factors differ considerably from region to region and so do the principal environmental constraints for grape production. Due to climate change, temperature, as the primary factor limiting the suitability for wine production is changing causing shifts in the regional distribution of wine producing areas and bringing “new” cool climate producers to the map and may be putting warmer areas at risk. 

The recent publication of the IPCC report (2021, 2022) will be analysed with respect to regional projections relevant for Viticulture and Oenology across the northern and southern hemisphere. The presentation will examine the climate development of various regions across cooler and warmer grape growing areas, and the potential impact on varietal distribution. As a second major environmental factor, water availability is a constraint in many grape growing areas. But projected changes in precipitation (P) rates are only one part of the equation. Since the water cycle is coupled to temperature because temperature plays a large role in the evaporation of water from surfaces or the transpiration of water through plants (ETp), it is the balance between P and ETp which determines water availability and this balance is changing in different directions in various grape growing regions. 

Both temperature and water availability have known effects on fruit composition. Much more difficult to quantify are effects through, for instance, changes in soils. We observe rising temperatures in the upper soil layers in access to the warming observed for air temperature. This will have an impact on the distribution of microbial populations, the decay rate of organic matter, the supply with nutrients, or the storage capacity for soil organic carbon (SOC), thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. Interactions between micro-organisms in the rhizosphere, the grapevine root system, degradation and fixation of SOC are complex and poorly understood but respond to environmental factors (such as increased soil temperatures), the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional, cover crop use versus open tillage for example). 

It is one of the major challenges in projecting analytical changes in the fruit and wine induced by these complex changes of a viticultural system through climate change aside of the main components sugar and acidity. The rising ambient CO2-concentration itself will also contribute to changes in leaf and fruit biochemistry and the interaction with the environmental factors temperature and water may act synergistically or antagonistically, exacerbating or mitigating effects

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Contact the author

Keywords

climate change and regional impacts, regulation programs, adaptation strategies, grape and wine composition 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Innovation in pre- and post-harvest biocontrol: novel strategies against Botrytis cinerea for grape preservation

Driven by the demand for sustainable agriculture, biocontrol is emerging as a crucial alternative to chemical fungicides for crop protection.

Effectiveness of “curettage” and rootstock over-grafting in the control of esca

Context and purpose of the study. The grapevine domestication requested the need of pruning, which expose the vines to trunk pathogens, leading to the spread of vine trunk diseases.

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié l’effet de l’orientation des rameaux sur les paramètres physiologiques, végétatifs et reproductif durant deux saisons de croissance (2002/2003 et 2003/2004) dans la région de Stellenbosch dans une vignoble du cépage Merlot sur 99R conduite en espalier et taillé à cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.