IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Abstract

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates). Accordingly, the range and magnitude of environmental factors differ considerably from region to region and so do the principal environmental constraints for grape production. Due to climate change, temperature, as the primary factor limiting the suitability for wine production is changing causing shifts in the regional distribution of wine producing areas and bringing “new” cool climate producers to the map and may be putting warmer areas at risk. 

The recent publication of the IPCC report (2021, 2022) will be analysed with respect to regional projections relevant for Viticulture and Oenology across the northern and southern hemisphere. The presentation will examine the climate development of various regions across cooler and warmer grape growing areas, and the potential impact on varietal distribution. As a second major environmental factor, water availability is a constraint in many grape growing areas. But projected changes in precipitation (P) rates are only one part of the equation. Since the water cycle is coupled to temperature because temperature plays a large role in the evaporation of water from surfaces or the transpiration of water through plants (ETp), it is the balance between P and ETp which determines water availability and this balance is changing in different directions in various grape growing regions. 

Both temperature and water availability have known effects on fruit composition. Much more difficult to quantify are effects through, for instance, changes in soils. We observe rising temperatures in the upper soil layers in access to the warming observed for air temperature. This will have an impact on the distribution of microbial populations, the decay rate of organic matter, the supply with nutrients, or the storage capacity for soil organic carbon (SOC), thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. Interactions between micro-organisms in the rhizosphere, the grapevine root system, degradation and fixation of SOC are complex and poorly understood but respond to environmental factors (such as increased soil temperatures), the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional, cover crop use versus open tillage for example). 

It is one of the major challenges in projecting analytical changes in the fruit and wine induced by these complex changes of a viticultural system through climate change aside of the main components sugar and acidity. The rising ambient CO2-concentration itself will also contribute to changes in leaf and fruit biochemistry and the interaction with the environmental factors temperature and water may act synergistically or antagonistically, exacerbating or mitigating effects

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Contact the author

Keywords

climate change and regional impacts, regulation programs, adaptation strategies, grape and wine composition 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.