IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Abstract

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides. Most studies aiming to profile glycosidic flavour compounds in grapes and wine are performed by the analysis of hydrolytically liberated aglycones, either enzymatically or through acid hydrolysis, mainly due to a lack of analytical standards, diversity of glycosides, and their small concentrations. However, aglycone analysis alone can not reveal the full
complexity of precursors and the structural rearrangements of aglycones during and post-release, as it has been repeatedly reported for TDN and other related C13-norisporenoids that arise slowly during wine ageing.
The main objective of this study was to develop an analytical strategy to profile the potential presence of putative lead candidates and the presence of unknown precursors involved in the formation of the potent aroma compound, TDN, in Riesling wine. To uncover the structural complexity of TDN precursors, we firstly utilised a non-targeted metabolomics
approach (using HPLC with QTOF mass spectrometry) on Riesling grape grown under varied light conditions to determine potential candidates; putative TDN precursors ex wine were then further characterised by tandem mass spectrometry (HPLC-QqQ-MS/MS).
In addition to previously reported precursors, multiple glycosides were found in Riesling wine made from grapes grown under different light regimes which represent promising candidates likely to contribute to the formation of TDN. The results demonstrate that the combined HPLC-MS methods are effective for confirming and significantly expanding the
knowledge about the precursor pools involved in the formation of potential aroma compounds in wine. At the same time, this analytical strategy can help to develop a greater understanding of the environmental influences that can drive the formation of individual flavour precursors.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Grebneva Yevgeniya1, Herderich Markus¹, Rauhut Doris², Nicolotti Luca1 and Hixson Josh¹

¹The Australian Wine Research Institute
²Hochschule Geisenheim University

Contact the author

Keywords

Non-targeted analysis, aroma precursors, C13-norisoprenoids, glycosides, Riesling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of electrolyzed water applied as an alternative treatment in vineyard on grape and wine quality

The main issues in viticulture are to highly decrease the use of phytochemicals. Electrolyzed water (EW) is one of the possible alternative when illness pressure is not too high

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.

Caratterizzazione vitivinicola delle “Terre del Piacenziano” ricomprese nella zona D.O.C. “colli piacentini” attraverso l’analisi sensoriale dei vini prodotti

I territori della Riserva Geologica del Piacenziano sono parte del pedeappennino piacentino e sono noti per essere la culla del Pliocene, quel periodo di storia della Terra compreso tra 5.3 e 1.8 milioni di anni fa. Gli strati argillosi e sabbiosi riccamente fossiliferi qui presenti sono da sempre oggetto di studi geo-paleontologici tant’è che il Pliocene medio (3.6-2.6 milioni di anni fa) è internazionalmente noto come Piacenziano. Le analisi sensoriali strutturate dei vini qui prodotti hanno evidenziato, soprattutto per il vino Monterosso, le positive peculiarità dei loro caratteri sensoriali e descritto gli scostamenti significativi del loro profilo sensoriale rispetto agli altri vini presi a riferimento.