IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Interpreting wine aroma: from aroma volatiles to the aromatic perception

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Abstract

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants. This natural complexity makes that the study of wine aroma has to deal not only with the quantitative determination of a large group of odorants, but has also to understand the basic principles determining the interactions between odorants. The basic mechanisms of odour interactions are not well known and seem to be very complex, but taking as base classical studies did by psychophysicists in the last 50 years, some outcomes of flavour chemistry, and some basic elements of the theory of perception, it has been recently possible to propose a systematic classification of odour interactions into four different categories: competitive, cooperative, destructive and creative. 
Competitive interactions take place when two or more non-blending odours are simultaneously perceived. The perceived intensity of any of them decreases as the odour intensities of other of the components is increased. Cooperative interactions take place when many odorants are present at subthreshold levels and are particularly relevant when similar odorants are present at whatever odour intensities. In these last cases, these interactions lead to the formation of odour vectors, which are groups of odorants of similar aroma acting concertedly and translating to the final product a specific aroma feature.  Destructive interactions take place when one of the odours present in the mixture is able to deconfigure the odour perception of the others, bringing about a decrease in the odour intensity before the deconfiguring odour is perceived. Most wine off-odours belong into this category. Creative interactions are configurational processes and take place when a new odour emerges out of the mixture of odorants. In milder cases, the addition of one odorant boosts the intensity of the others present in the mixture.
With these elements at hand, it is possible to propose a systematic to understand the chemical bases of wine aroma perceptions. Overall, around 80 aroma molecules, seem to be able to explain the different positive aroma nuances of all wines. The major wine volatile components, all of them by-products of alcoholic fermentation, form “the wine aroma buffer”, which is a mixture with vinous aroma and a strong deconfigurational power induced by the destructive interactions elicited by ethanol, isoamyl and isobutyl alcohols and acetic acid. Then, wine odorants are further classified into 35 different aroma vectors, broadly classified into 10 different odour categories. Some creative interactions, leading to relevant wine odours, such as pineapple, strawberry candy, black fruits or raisins have been also identified and will be discussed.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Vicente Ferreira¹

¹Laboratory for Aroma Analysis and Enology (LAAE)

Contact the author

Keywords

wine aroma, flavor, odorant, perceptual interaction

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

How to improve the success of dead vine replacement: insights into the impacts of young plant‘s environment 

Grapevine faces multiple biotic and/or abiotic stresses, which are interrelated. Depending on their incidence, they can have a negative impact on the development and production of the plant, but also on its longevity, leading to vine dieback. One of the consequences of vine dieback on production is the increased replacement rate of dead or missing vines within a parcel.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Possible toxicological risk arising from contamination of grapes and derivatives by emerging mycotoxins: patulin

Following the acquired awareness of the presence of ochratoxin A in grape derivatives, actions were undertaken to contain this contamination, and attempts were made to evaluate the presence of any other molecule belonging to this class.