IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Interpreting wine aroma: from aroma volatiles to the aromatic perception

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Abstract

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants. This natural complexity makes that the study of wine aroma has to deal not only with the quantitative determination of a large group of odorants, but has also to understand the basic principles determining the interactions between odorants. The basic mechanisms of odour interactions are not well known and seem to be very complex, but taking as base classical studies did by psychophysicists in the last 50 years, some outcomes of flavour chemistry, and some basic elements of the theory of perception, it has been recently possible to propose a systematic classification of odour interactions into four different categories: competitive, cooperative, destructive and creative. 
Competitive interactions take place when two or more non-blending odours are simultaneously perceived. The perceived intensity of any of them decreases as the odour intensities of other of the components is increased. Cooperative interactions take place when many odorants are present at subthreshold levels and are particularly relevant when similar odorants are present at whatever odour intensities. In these last cases, these interactions lead to the formation of odour vectors, which are groups of odorants of similar aroma acting concertedly and translating to the final product a specific aroma feature.  Destructive interactions take place when one of the odours present in the mixture is able to deconfigure the odour perception of the others, bringing about a decrease in the odour intensity before the deconfiguring odour is perceived. Most wine off-odours belong into this category. Creative interactions are configurational processes and take place when a new odour emerges out of the mixture of odorants. In milder cases, the addition of one odorant boosts the intensity of the others present in the mixture.
With these elements at hand, it is possible to propose a systematic to understand the chemical bases of wine aroma perceptions. Overall, around 80 aroma molecules, seem to be able to explain the different positive aroma nuances of all wines. The major wine volatile components, all of them by-products of alcoholic fermentation, form “the wine aroma buffer”, which is a mixture with vinous aroma and a strong deconfigurational power induced by the destructive interactions elicited by ethanol, isoamyl and isobutyl alcohols and acetic acid. Then, wine odorants are further classified into 35 different aroma vectors, broadly classified into 10 different odour categories. Some creative interactions, leading to relevant wine odours, such as pineapple, strawberry candy, black fruits or raisins have been also identified and will be discussed.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Vicente Ferreira¹

¹Laboratory for Aroma Analysis and Enology (LAAE)

Contact the author

Keywords

wine aroma, flavor, odorant, perceptual interaction

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Study of grape plant behaviour (cv. Chasselas) on various “terroirs” of the Vaud county (Switzerland)

L’étude du comportement physiologique et agronomique de la vigne (cv. Chasselas) a été réalisée en 2001 par la Station fédérale de recherches en production végétale de Changins sur divers terroirs viticoles vaudois (Suisse), dans le cadre d’un projet d’étude des terroirs viticoles vaudois en collaboration avec le bureau I LETESSIER (SIGALES) à Grenoble et l’École polytechnique fédérale de Lausanne (EPFL).

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues.

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.