IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A methyl salicylate glycoside mapping of monovarietal Italian white wines.

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Abstract

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates. The hydrolysis of glycosides occurs mainly during the fermentation due to the enzymatic activity, and during the storage as a consequence of pH and temperature conditions. In the last scenario, the gradual release of aglycones contributes to the aroma evolution of wine. Methyl salicylate (MeSa) is a plant metabolite known to be a chemical marker of several cryptogamic diseases1; however, it can be also found in wines produced from healthy grapes, whose presence provides a pleasant wintergreen and balsamic nuance, especially in aged wines2,3. This volatile odor-active ester can be found, mainly bound to glycosides, into the skin and the stem of the grapes. MeSa in the free form is frequently present under the sensory threshold while in some red and white varieties it can exceed the olfactory threshold. In our previous works MeSa have been found in relevant content, both in bound and free form, in some genetically related Italian varieties such as Trebbiano di Lugana, Trebbiano di Soave (both employed in the production of Lugana wines), and Verdicchio. In this research a straightforward filter-and-shot LC-MS/MS method was used for the determination of 7 different MeSa glycosides in 246 samples representative of 18 different monovarietal Italian white wines. Thanks to the minimized sample preparation procedure (wines were only filtered at 0.45 µm) this method allowed a reliable quantification of the analytes without wasting time, energy, and solvents, in total agreement with the Green Analytical Chemistry principles. Analysis were performed using an AB Sciex QTrap 6500+ both in positive and negative mode, equipped with a Waters Acquity C18 HSS-T3 150 mm x 2.1 mm x 1.8 µm column working at 0.28 mL*min-1. Glycosides of interest were MeSa 2-O-β-D-glucoside, MeSa 2-O-α-L-arabinopyranosyl(1à6)-β-D glucopyranoside, MeSa 2-O-β-D-xylopyranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-β-D-apiofuranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-α-L-rhamnopyranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-β-D-glucopyranosyl(1à6)-β-D-glucopyranoside, and MeSa 2-O-β-D-xylnopyranosyl(1à2)[O-β-D-xylopyranosyl(1à6)]-O-β-D-glucopyranoside. MeSa glycosides were found in Verdicchio and Lugana wines, in accordance with literature2,3, whereas where found for the first time in Garganega and Erbaluce varieties. The knowledge of the concentration of MeSa glycosides could be considered a potential predictor of the potential balsamic evolution of white wines. Further details are currently under investigation. Acknowledgments: MIUR project PRIN n. 2017RXFFRR.

References

1 Poitou, Xavier, Pascaline Redon, Alexandre Pons, Emilie Bruez, Laurent Delière, Axel Marchal, Céline Cholet, Laurence Geny-Denis, and Philippe Darriet. 2021. “Methyl Salicylate, a Grape and Wine Chemical Marker and Sensory Contributor in Wines Elaborated from Grapes Affected or Not by Cryptogamic Diseases.” Food Chemistry 360 (October): 130120. https://doi.org/10.1016/j.foodchem.2021.130120.
2 Carlin, Silvia, Domenico Masuero, Graziano Guella, Urska Vrhovsek, and Fulvio Mattivi. 2019. “Methyl Salicylate Glycosides in Some Italian Varietal Wines.” Molecules 24 (18): 3260. https://doi.org/10.3390/molecules24183260.
3 Slaghenaufi, Davide, Giovanni Luzzini, Jessica Samaniego Solis, Filippo Forte, and Maurizio Ugliano. 2021. “Two Sides to One Story—Aroma Chemical and Sensory Signature of Lugana and Verdicchio Wines.” Molecules 26 (8): 2127. https://doi.org/10.3390/molecules26082127.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Piergiovanni Maurizio1, Carlin Silvia2, Masuero Domenico2, Rolle Luca3, Rio Segade Susana3, Slaghenaufi Davide4, Ugliano Maurizio4, Marangon Matteo5, Curioni Andrea5, Parpinello Giuseppina Paola6, Versari Andrea6, Piombino Paola7, Pittari Elisabetta7, Mattivi Fulvio1 and Vrhovsek Urska2

1Center Agriculture Food Environment (C3A), University of Trento
2Metabolomics Unit, Research and Innovation Center, Edmund Mach Foundation, Italy
3Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Italy
4Department of Biotechnology, University of Verona, Italy
5Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Department of Agricultural Sciences, University of Naples Federico II, Italy

Contact the author

Keywords

Methyl salicylate, glycosides, aglycones, monovarietal, white-wines 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Better understanding on the fungal chitosan and derivatives antiseptic effect on Brettanomyces bruxellensis in wine.

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011).

Influence of protein stabilization with aspergillopepsin I on wine aroma composition

The protein haze formation in white and rosé wines during storage, shipping and commercialization has always been an important issue for winemakers. Among the various solutions industrially proposed, the use of bentonite is certainly the most widespread. However, the harmful effects of this treatment are known either in terms of wine volume loss and wine flavour and aroma.

Vitamins in grape must: let’s lift a corner of the veil

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades.

Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Stilbenes, a kind of non-flavonoid phenolic compounds, have been reported to be responsible for various beneficial effects. Their biological properties include antibacterial and antifungal effects, as well as cardioprotective, neuroprotective and anticancer actions (Guerrero et al. 2009).Several strategies can be used to increase stilbene content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.