IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A methyl salicylate glycoside mapping of monovarietal Italian white wines.

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Abstract

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates. The hydrolysis of glycosides occurs mainly during the fermentation due to the enzymatic activity, and during the storage as a consequence of pH and temperature conditions. In the last scenario, the gradual release of aglycones contributes to the aroma evolution of wine. Methyl salicylate (MeSa) is a plant metabolite known to be a chemical marker of several cryptogamic diseases1; however, it can be also found in wines produced from healthy grapes, whose presence provides a pleasant wintergreen and balsamic nuance, especially in aged wines2,3. This volatile odor-active ester can be found, mainly bound to glycosides, into the skin and the stem of the grapes. MeSa in the free form is frequently present under the sensory threshold while in some red and white varieties it can exceed the olfactory threshold. In our previous works MeSa have been found in relevant content, both in bound and free form, in some genetically related Italian varieties such as Trebbiano di Lugana, Trebbiano di Soave (both employed in the production of Lugana wines), and Verdicchio. In this research a straightforward filter-and-shot LC-MS/MS method was used for the determination of 7 different MeSa glycosides in 246 samples representative of 18 different monovarietal Italian white wines. Thanks to the minimized sample preparation procedure (wines were only filtered at 0.45 µm) this method allowed a reliable quantification of the analytes without wasting time, energy, and solvents, in total agreement with the Green Analytical Chemistry principles. Analysis were performed using an AB Sciex QTrap 6500+ both in positive and negative mode, equipped with a Waters Acquity C18 HSS-T3 150 mm x 2.1 mm x 1.8 µm column working at 0.28 mL*min-1. Glycosides of interest were MeSa 2-O-β-D-glucoside, MeSa 2-O-α-L-arabinopyranosyl(1à6)-β-D glucopyranoside, MeSa 2-O-β-D-xylopyranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-β-D-apiofuranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-α-L-rhamnopyranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-β-D-glucopyranosyl(1à6)-β-D-glucopyranoside, and MeSa 2-O-β-D-xylnopyranosyl(1à2)[O-β-D-xylopyranosyl(1à6)]-O-β-D-glucopyranoside. MeSa glycosides were found in Verdicchio and Lugana wines, in accordance with literature2,3, whereas where found for the first time in Garganega and Erbaluce varieties. The knowledge of the concentration of MeSa glycosides could be considered a potential predictor of the potential balsamic evolution of white wines. Further details are currently under investigation. Acknowledgments: MIUR project PRIN n. 2017RXFFRR.

References

1 Poitou, Xavier, Pascaline Redon, Alexandre Pons, Emilie Bruez, Laurent Delière, Axel Marchal, Céline Cholet, Laurence Geny-Denis, and Philippe Darriet. 2021. “Methyl Salicylate, a Grape and Wine Chemical Marker and Sensory Contributor in Wines Elaborated from Grapes Affected or Not by Cryptogamic Diseases.” Food Chemistry 360 (October): 130120. https://doi.org/10.1016/j.foodchem.2021.130120.
2 Carlin, Silvia, Domenico Masuero, Graziano Guella, Urska Vrhovsek, and Fulvio Mattivi. 2019. “Methyl Salicylate Glycosides in Some Italian Varietal Wines.” Molecules 24 (18): 3260. https://doi.org/10.3390/molecules24183260.
3 Slaghenaufi, Davide, Giovanni Luzzini, Jessica Samaniego Solis, Filippo Forte, and Maurizio Ugliano. 2021. “Two Sides to One Story—Aroma Chemical and Sensory Signature of Lugana and Verdicchio Wines.” Molecules 26 (8): 2127. https://doi.org/10.3390/molecules26082127.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Piergiovanni Maurizio1, Carlin Silvia2, Masuero Domenico2, Rolle Luca3, Rio Segade Susana3, Slaghenaufi Davide4, Ugliano Maurizio4, Marangon Matteo5, Curioni Andrea5, Parpinello Giuseppina Paola6, Versari Andrea6, Piombino Paola7, Pittari Elisabetta7, Mattivi Fulvio1 and Vrhovsek Urska2

1Center Agriculture Food Environment (C3A), University of Trento
2Metabolomics Unit, Research and Innovation Center, Edmund Mach Foundation, Italy
3Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Italy
4Department of Biotechnology, University of Verona, Italy
5Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Department of Agricultural Sciences, University of Naples Federico II, Italy

Contact the author

Keywords

Methyl salicylate, glycosides, aglycones, monovarietal, white-wines 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Effects Of Injections Of Large Amounts Of Air During Fermentation

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation.

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Grape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and they still require sample preparation, whether with classical analyses or with NIR analyses.