IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Abstract

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics. Aim: the aim of this research was to study the effect of elaborating blend wines from grape-cultivars with different phenolic profiles on, copigmentation, promotion of stable pigments, color, and contents of phenolic compounds. The time of blending, before-fermentation blends of musts (BFB) or after-fermentation blends of wines (AFB) was also evaluated. Material and Methods: During 2020 vintage, blend wines were made from grapes (m/m) or wines (v/v), in proportion of 1/2-1/2 of Tannat-Marselan, Tannat-Syrah, Syrah-Marselan, and 1/3-1/3-1/3 of Tannat-Syrah-Marselan. The varietal wines (VW) were also elaborated, all by triplicate at experimental scale. Spectrophotometric analysis (including total phenols, wine color, and antioxidant capacity measurements) were performed right-after wine stabilization, and a year later together with LC-DAD-MS/MS determinations (analysis of pigments, flavonols, flavan-3-ols, hydroxycinnamic acids and stilbenes). Wines and samples of the grape skin and seed used in the experiments were also analyzed. Results: Tannat wines had pigments with low proportion of malvidin and acylated derivatives, high contents of hydroxycinnamic acids, flavan-3-ols, and relative low contents of flavonols (mainly based on myricetin). Syrah wines had high proportion of malvidin and the highest of acylated derivatives, low contents of hydroxycinnamic acids, medium concentrations of flavan-3-ols, and high contents of flavonols, particularly based on quercetin and isorhamnetin. Marselan, showed high contents of anthocyanins, with the highest proportion of malvidin, high concentrations of hydroxycinnamic acids, flavan-3-ol and flavonols, with high proportion of syringetin. Thus, each cultivar expressed its characteristic phenolic profile. Copigmentation was significantly higher in Marselan than in Syrah, and in Syrah than in Tannat wines, but the blended wines that included Tannat and Marselan had the highest proportion of copigmentation, possibly due to a better relationship between pigments and copigments like flavonols. The BFB wines had higher and more bluish color than AFB wines, mainly due to BFB wines had significant lower pH that AFB (e.g. Marselan_Tannat CI 13.93 and 12.77 in BFB and AFB respectively). The BFB wines had higher color due to polymers than BAF and VW wines. Tri-varietal blends presented a more bluish hue than bi-varietal blends, maybe because of the better balance among pigments and compigments found in the formers. The wines made BFB had higher content of phenols in the wines after a year than the expected considering the proportion of each cultivar in the blend. Blend red-wines made considering grape-cultivar phenolic characteristics may improve wine quality.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Favre Guzmán1, Gómez-Alonso Sergio2, Pérez-Navarro José2, Morales Belén1, Piccardo Diego1 and González-Neves Gustavo1

1Facultad de Agronomía, Universidad de la República (Udelar)
2Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha

Contact the author

Keywords

Tanna, Marselan, Syrah, Blend wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Investigation on the potentiality of a biostimulant by Fabaceae tissues and rich in triacontanol to enhance grapevine resilience under drought stress

The primary objective of this research was to investigate the potential benefits of a Fabaceae-based product rich in triacontanol (a long-chain alcohol) applied to Vitis vinifera cv. Merlot, on key physiological and productive parameters of grapevines under controlled water stress conditions.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Phytochemical composition of Artemisia absinthium L.

Absinthe is historically described as a distilled, highly alcoholic beverage. It is an anise-flavoured spirit derived from botanicals, including the flowers and leaves of Artemisia absinthium L. (“grand wormwood”), together with green anise, sweet fennel, and other medicinal and culinary herbs.

Linear sweep voltammetry to classify and characterize the antioxidant properties of tannins

In recent years, numerous studies have been carried out at the OIV on oenological tannins, both with regard to oenological properties and methods of characterization. The results of these recent studies have led to the revision of the general monograph and the drafting of four new monographs, one for each of the four chemical classes into which the tannins have been grouped: ellagitannins, gallotannins, procyanidins/prodelphinidins, profisetinidins/prorobinetinins.