IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Abstract

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining. Proteins extracted from cereals, potatoes, and legumes have been proposed as effective fining agents, but only those from pea and potatoes have been approved for their use in wine. This work aimed at determining the fining ability of the Andean pseudocereals quinoa (Chenopodium quinoa Willd.) and kiwicha (Amaranthus caudatus L.) protein extracts (QP and KP respectively), compared to commercial fining agents, on red wines.

METHODOLOGY: The trials compared the performance of QP and KP, two potato protein extracts and gelatin, at two different contact times (48 and 96 h), on Cabernet Sauvignon wine. The turbidity was measured with a Hanna HI 83749 turbidimeter and results were expressed as NTU. Total phenolics (1), precipitable tannins (2), catechins (3), polymeric pigments (4), and CIELab parameters were determined spectrophotometrically. Low molecular weight phenolics were analyzed by HPLC (5).

RESULTS: QP and KP were effective in reducing the turbidity of the studied wine in a similar way than commercial fining agents. Treatments with QP and KP reduced total phenolics and total tannins similarly than commercial fining agents. Most of the treatments did not affect the flavan-3-ol content of wines. Our results allow us to hypothesize that the fining agents used are more likely to bind high molecular weight tannins than to those of low molecular weight or monomers. In some cases, treatments with QP and KP slightly decreased the color intensity similarly to other vegetable proteins.

CONCLUSIONS:

The fining ability of quinoa and kiwicha protein extracts has been studied for the first time. Results showed that QP and KP could be used as effective fining agents for
red wines as alternatives to animal proteins such as gelatin. The use of QP and KP as fining agents has the advantage of being non-allergenic products.

REFERENCES:

1. Waterhouse AL. Determination of Total Phenolics. In: Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2003.
2. Mercurio MD, Dambergs RG, Herderich MJ, Smith PA. High Throughput Analysis of Red Wine and Grape PhenolicsAdaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. Journal of Agricultural and Food Chemistry. 2007 Jun 1;55(12):4651–7.
3. de Beer D, Harbertson J, Kilmartin PA, V R, T B, Adams DO, et al. Phenolics: A comparison of diverse analytical methods. American Journal of Enology and Viticulture. 2004 Sep;55:389–400.
4. Harbertson JF, Picciotto EA, Adams DO. Measurement of Polymeric Pigments in Grape Berry Extract sand Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. American Journal of Enology and Viticulture [Internet]. 2003;54(4):301–6. Available from: https://www.ajevonline.org/content/54/4/301
5. Gómez-Alonso, Sergio, Esteban García-Romero, and Isidro Hermosín-Gutiérrez. “HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence.” Journal of Food Composition and Analysis. 2007; (20): 618-626.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pino Liudis1, Peña-Martínez Paula A.1 and Laurie V. Felipe1

1Facultad de Ciencias Agrarias, Universidad de Talca.

Contact the author

Keywords

Wine, plant protein, fining, tannin, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Un jour, l’AOD (Appellation d’Origine viticole Durable), fusion de l’origine et de la durabilité

The evolution of wine quality issues is historically expressed by the passage from wine quality (what is a wine?) to wine quality (what is a good wine?). Perhaps the next question could be: what is a good sustainable wine? To contribute to reflection on this theme, it may be worthwhile to undertake an exercise in prospective fiction, which we have identified in the hypothesis of the AOD, the “appellation d’origine durable”, a scenario we will develop in the light of developments in the wine industry and the regulation on geographical indications.

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Effect of cytokinin and auxin application on double cropping performance in Vitis vinifera: preliminary findings

Double cropping is a novel technique, driven by the extension of the growing season caused by global warming.