IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Abstract

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining. Proteins extracted from cereals, potatoes, and legumes have been proposed as effective fining agents, but only those from pea and potatoes have been approved for their use in wine. This work aimed at determining the fining ability of the Andean pseudocereals quinoa (Chenopodium quinoa Willd.) and kiwicha (Amaranthus caudatus L.) protein extracts (QP and KP respectively), compared to commercial fining agents, on red wines.

METHODOLOGY: The trials compared the performance of QP and KP, two potato protein extracts and gelatin, at two different contact times (48 and 96 h), on Cabernet Sauvignon wine. The turbidity was measured with a Hanna HI 83749 turbidimeter and results were expressed as NTU. Total phenolics (1), precipitable tannins (2), catechins (3), polymeric pigments (4), and CIELab parameters were determined spectrophotometrically. Low molecular weight phenolics were analyzed by HPLC (5).

RESULTS: QP and KP were effective in reducing the turbidity of the studied wine in a similar way than commercial fining agents. Treatments with QP and KP reduced total phenolics and total tannins similarly than commercial fining agents. Most of the treatments did not affect the flavan-3-ol content of wines. Our results allow us to hypothesize that the fining agents used are more likely to bind high molecular weight tannins than to those of low molecular weight or monomers. In some cases, treatments with QP and KP slightly decreased the color intensity similarly to other vegetable proteins.

CONCLUSIONS:

The fining ability of quinoa and kiwicha protein extracts has been studied for the first time. Results showed that QP and KP could be used as effective fining agents for
red wines as alternatives to animal proteins such as gelatin. The use of QP and KP as fining agents has the advantage of being non-allergenic products.

REFERENCES:

1. Waterhouse AL. Determination of Total Phenolics. In: Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2003.
2. Mercurio MD, Dambergs RG, Herderich MJ, Smith PA. High Throughput Analysis of Red Wine and Grape PhenolicsAdaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. Journal of Agricultural and Food Chemistry. 2007 Jun 1;55(12):4651–7.
3. de Beer D, Harbertson J, Kilmartin PA, V R, T B, Adams DO, et al. Phenolics: A comparison of diverse analytical methods. American Journal of Enology and Viticulture. 2004 Sep;55:389–400.
4. Harbertson JF, Picciotto EA, Adams DO. Measurement of Polymeric Pigments in Grape Berry Extract sand Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. American Journal of Enology and Viticulture [Internet]. 2003;54(4):301–6. Available from: https://www.ajevonline.org/content/54/4/301
5. Gómez-Alonso, Sergio, Esteban García-Romero, and Isidro Hermosín-Gutiérrez. “HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence.” Journal of Food Composition and Analysis. 2007; (20): 618-626.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pino Liudis1, Peña-Martínez Paula A.1 and Laurie V. Felipe1

1Facultad de Ciencias Agrarias, Universidad de Talca.

Contact the author

Keywords

Wine, plant protein, fining, tannin, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.