IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Abstract

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining. Proteins extracted from cereals, potatoes, and legumes have been proposed as effective fining agents, but only those from pea and potatoes have been approved for their use in wine. This work aimed at determining the fining ability of the Andean pseudocereals quinoa (Chenopodium quinoa Willd.) and kiwicha (Amaranthus caudatus L.) protein extracts (QP and KP respectively), compared to commercial fining agents, on red wines.

METHODOLOGY: The trials compared the performance of QP and KP, two potato protein extracts and gelatin, at two different contact times (48 and 96 h), on Cabernet Sauvignon wine. The turbidity was measured with a Hanna HI 83749 turbidimeter and results were expressed as NTU. Total phenolics (1), precipitable tannins (2), catechins (3), polymeric pigments (4), and CIELab parameters were determined spectrophotometrically. Low molecular weight phenolics were analyzed by HPLC (5).

RESULTS: QP and KP were effective in reducing the turbidity of the studied wine in a similar way than commercial fining agents. Treatments with QP and KP reduced total phenolics and total tannins similarly than commercial fining agents. Most of the treatments did not affect the flavan-3-ol content of wines. Our results allow us to hypothesize that the fining agents used are more likely to bind high molecular weight tannins than to those of low molecular weight or monomers. In some cases, treatments with QP and KP slightly decreased the color intensity similarly to other vegetable proteins.

CONCLUSIONS:

The fining ability of quinoa and kiwicha protein extracts has been studied for the first time. Results showed that QP and KP could be used as effective fining agents for
red wines as alternatives to animal proteins such as gelatin. The use of QP and KP as fining agents has the advantage of being non-allergenic products.

REFERENCES:

1. Waterhouse AL. Determination of Total Phenolics. In: Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2003.
2. Mercurio MD, Dambergs RG, Herderich MJ, Smith PA. High Throughput Analysis of Red Wine and Grape PhenolicsAdaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. Journal of Agricultural and Food Chemistry. 2007 Jun 1;55(12):4651–7.
3. de Beer D, Harbertson J, Kilmartin PA, V R, T B, Adams DO, et al. Phenolics: A comparison of diverse analytical methods. American Journal of Enology and Viticulture. 2004 Sep;55:389–400.
4. Harbertson JF, Picciotto EA, Adams DO. Measurement of Polymeric Pigments in Grape Berry Extract sand Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. American Journal of Enology and Viticulture [Internet]. 2003;54(4):301–6. Available from: https://www.ajevonline.org/content/54/4/301
5. Gómez-Alonso, Sergio, Esteban García-Romero, and Isidro Hermosín-Gutiérrez. “HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence.” Journal of Food Composition and Analysis. 2007; (20): 618-626.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pino Liudis1, Peña-Martínez Paula A.1 and Laurie V. Felipe1

1Facultad de Ciencias Agrarias, Universidad de Talca.

Contact the author

Keywords

Wine, plant protein, fining, tannin, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of a spontaneous cover crop on the vineyard and soil erosion under Mediterranean climate

Sixty five % of the agricultural area of the Basque Country located in the DO Ca Rioja corresponds to vineyards. More than 40% of it has an average slope greater than 10%, which makes it sensitive to erosive processes. Furthermore, it is foreseeable that extreme weather events (storms, hail, extreme heat and cold, etc.) will be favored due to climate change. Cover cropping can mitigate this risk, and therefore the objective of this work is to evaluate the impact that a vegetable cover has on the agronomic behavior of the vineyard, the quality of the grape and soil erosion. For this, a trial has been carried out with a Graciano variety vineyard with a slope between 10% -20% during the years 2020 and 2021. Conventional tillage management in the area has been compared (4-6 passes per year of tillage machinery) versus spontaneous vegetation cover management in the vineyard. This implies not tilling and allowing the grass of the land to colonize the range between the lines of vines, controlling their height through 1-3 mowing passes per year, always trying to affect the surface of the land as little as possible. The vegetative growth, yield and quality of the grape and wine was measured. Furthermore, erosion has been measured using Gerlasch boxes. The yield was lower in the second year of the trial in the cover crop treatment, but erosion was significantly reduced.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

Wine ageing: Managing wood contact time.

Barrel ageing is a transformative process that alters a wine’s organoleptic properties and consequently its price. Even though it is considered beneficial mostly for red wines, ageing can also be used for white wines but for shorter time periods. Due to barrel costs, space requirements and the markets’ demands for fast release of each new vintage, new products such as oak chips or shavings have been developed to help minimize the time needed for the extraction of essential wood compounds.