IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Abstract

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining. Proteins extracted from cereals, potatoes, and legumes have been proposed as effective fining agents, but only those from pea and potatoes have been approved for their use in wine. This work aimed at determining the fining ability of the Andean pseudocereals quinoa (Chenopodium quinoa Willd.) and kiwicha (Amaranthus caudatus L.) protein extracts (QP and KP respectively), compared to commercial fining agents, on red wines.

METHODOLOGY: The trials compared the performance of QP and KP, two potato protein extracts and gelatin, at two different contact times (48 and 96 h), on Cabernet Sauvignon wine. The turbidity was measured with a Hanna HI 83749 turbidimeter and results were expressed as NTU. Total phenolics (1), precipitable tannins (2), catechins (3), polymeric pigments (4), and CIELab parameters were determined spectrophotometrically. Low molecular weight phenolics were analyzed by HPLC (5).

RESULTS: QP and KP were effective in reducing the turbidity of the studied wine in a similar way than commercial fining agents. Treatments with QP and KP reduced total phenolics and total tannins similarly than commercial fining agents. Most of the treatments did not affect the flavan-3-ol content of wines. Our results allow us to hypothesize that the fining agents used are more likely to bind high molecular weight tannins than to those of low molecular weight or monomers. In some cases, treatments with QP and KP slightly decreased the color intensity similarly to other vegetable proteins.

CONCLUSIONS:

The fining ability of quinoa and kiwicha protein extracts has been studied for the first time. Results showed that QP and KP could be used as effective fining agents for
red wines as alternatives to animal proteins such as gelatin. The use of QP and KP as fining agents has the advantage of being non-allergenic products.

REFERENCES:

1. Waterhouse AL. Determination of Total Phenolics. In: Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2003.
2. Mercurio MD, Dambergs RG, Herderich MJ, Smith PA. High Throughput Analysis of Red Wine and Grape PhenolicsAdaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. Journal of Agricultural and Food Chemistry. 2007 Jun 1;55(12):4651–7.
3. de Beer D, Harbertson J, Kilmartin PA, V R, T B, Adams DO, et al. Phenolics: A comparison of diverse analytical methods. American Journal of Enology and Viticulture. 2004 Sep;55:389–400.
4. Harbertson JF, Picciotto EA, Adams DO. Measurement of Polymeric Pigments in Grape Berry Extract sand Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. American Journal of Enology and Viticulture [Internet]. 2003;54(4):301–6. Available from: https://www.ajevonline.org/content/54/4/301
5. Gómez-Alonso, Sergio, Esteban García-Romero, and Isidro Hermosín-Gutiérrez. “HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence.” Journal of Food Composition and Analysis. 2007; (20): 618-626.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pino Liudis1, Peña-Martínez Paula A.1 and Laurie V. Felipe1

1Facultad de Ciencias Agrarias, Universidad de Talca.

Contact the author

Keywords

Wine, plant protein, fining, tannin, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average

Opportunities and challenges in the adoption of new grape varieties by producers: A case study from the Northeastern United

Grape breeding for resistance to fungal diseases is today very dynamic throughout the world notably in France. New varieties are obtained by hybridization between susceptible varieties of the vitis vinifera species and resistant genotypes, with breeding programs generally lasting between 15 and 25 years and resulting in the registration of a few new varieties. Though these varieties can provide several benefits and can be planted by winegrowers, they are not always systematically adopted.

New insight the pinking phenomena of white wine

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue.

Characteristics of ecological production of grape and wine in Prizren’s vineyard territory in Yugoslavia

Prizren’s vineyard territory-y assigned for ecological production of grapes and wine includes 1. 200 hectares of vineyard located in five separate localities which belongs to the P KB “Kosovo vina”, Mala Krusa in Prizren. Division of vineyard territory in zones was carried out in 1974. Pertaining to the vineyards, the climate and soil conditions have been studied and determined as well as topographie establishing of vineyard boundaries.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.