IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Abstract

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.The main objective of this study is to evaluate this technology’s potential to offer a new indicator of alcoholic fermentation during wine production. Synthetic solutions with only one component (fructose, glucose and alcohol) and several components imitating alcoholic fermentation were measured. Initially, two temperatures (18°C and 28°C) were used for simple solutions measurement and the results showed a significant impact of the temperature. At 18°C, simple solutions of fructose and alcohol at different concentrations were well distinguished but not at 28°C. Furthermore, the results were found to be dependent on the electrode measuring system (2 or 4 electrodes exhibit different results) but not on the type of electric excitation (sinusoidal excitation or a combination of two different excitation waves). While analyzing the data, strong correlations (>0,95) were found between the impedance values and the type of investigated solutions. This indicated the high potential of this technology as a new indicator for alcoholic fermentation control.   

References

1. Garcı́a, A., et al., Dielectric characteristics of grape juice and wine. Biosystems Engineering, 2004. 88(3): p. 343-349.
2. Fazayeli, A., et al., Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 2019.
3. Zhu, X., et al., Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 2012. 109(2): p. 258-266.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zeng Liming1, Preda Ioana2, Bapst Nicolas2, Pernet Arnaud1, Siebert Priscilla1, Cléroux Marilyn1 and Mertenat Muriel1

1Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Nyon, Switzerland
2iPrint Institute, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Fribourg, Switzerland

Contact the author

Keywords

Alcoholic fermentation; capacitive sensor; frequency domain spectroscopy; dipolar and ionic polarization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Distinctive flavour or taint? The case of smoky characters in wine

Forest fires in the vicinity of vineyards have significantly increased in the last decade and are a concern for grapegrowers and winemakers in many wine producing countries. The fires cause smoke drift throughout vineyards which cannot be avoided and may result in the production of wines described as ‘smoke tainted’. Such wines are characterized by undesirable sensory characters described as ‘smoky’, ‘burnt’, ‘ash’ aromas and flavours, and also may cause a lingering, unpleasant ashy aftertaste [1; 2].

FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

The exploitation of secondary metabolic pathways of non-Saccharomyces yeasts is a promising approach to protect traditional wines from the ongoing climate change, which can alter their peculiar features by modifying the chemical composition of grape musts. In this regard, an interesting example is the sequential inoculum of Lachancea thermotolerans and Saccharomyces. Cerevisiae. The aim of the sequential inoculum is to increase titratable acidity by lactic acid accumulation, to lower pH and to reduce the alcohol and acetic acid content in wine.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves.

Chardonnay white wine bottled with different oenological tannins: effect on colour traits, volatile composition and sensory attributes during shelf-life

The use of oenological tannins during winemaking has been mostly studied for improving colour traits and stability on red wines. Their effectiveness mainly depends on the tannin composition, grape variety and winemaking approach [1].