IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Abstract

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.The main objective of this study is to evaluate this technology’s potential to offer a new indicator of alcoholic fermentation during wine production. Synthetic solutions with only one component (fructose, glucose and alcohol) and several components imitating alcoholic fermentation were measured. Initially, two temperatures (18°C and 28°C) were used for simple solutions measurement and the results showed a significant impact of the temperature. At 18°C, simple solutions of fructose and alcohol at different concentrations were well distinguished but not at 28°C. Furthermore, the results were found to be dependent on the electrode measuring system (2 or 4 electrodes exhibit different results) but not on the type of electric excitation (sinusoidal excitation or a combination of two different excitation waves). While analyzing the data, strong correlations (>0,95) were found between the impedance values and the type of investigated solutions. This indicated the high potential of this technology as a new indicator for alcoholic fermentation control.   

References

1. Garcı́a, A., et al., Dielectric characteristics of grape juice and wine. Biosystems Engineering, 2004. 88(3): p. 343-349.
2. Fazayeli, A., et al., Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 2019.
3. Zhu, X., et al., Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 2012. 109(2): p. 258-266.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zeng Liming1, Preda Ioana2, Bapst Nicolas2, Pernet Arnaud1, Siebert Priscilla1, Cléroux Marilyn1 and Mertenat Muriel1

1Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Nyon, Switzerland
2iPrint Institute, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Fribourg, Switzerland

Contact the author

Keywords

Alcoholic fermentation; capacitive sensor; frequency domain spectroscopy; dipolar and ionic polarization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Black foot disease in South African vineyards and grapevine nurseries

Over the last few years a drastic reduction has been noted in the survival rate of vine cuttings in nurseries, as well as in young vineyards in the Western Cape Province of South Africa. The low average take percentages of young vines can be attributed to several factors, including fungal, bacterial and viral diseases, insect and nematode pests,