IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Abstract

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.The main objective of this study is to evaluate this technology’s potential to offer a new indicator of alcoholic fermentation during wine production. Synthetic solutions with only one component (fructose, glucose and alcohol) and several components imitating alcoholic fermentation were measured. Initially, two temperatures (18°C and 28°C) were used for simple solutions measurement and the results showed a significant impact of the temperature. At 18°C, simple solutions of fructose and alcohol at different concentrations were well distinguished but not at 28°C. Furthermore, the results were found to be dependent on the electrode measuring system (2 or 4 electrodes exhibit different results) but not on the type of electric excitation (sinusoidal excitation or a combination of two different excitation waves). While analyzing the data, strong correlations (>0,95) were found between the impedance values and the type of investigated solutions. This indicated the high potential of this technology as a new indicator for alcoholic fermentation control.   

References

1. Garcı́a, A., et al., Dielectric characteristics of grape juice and wine. Biosystems Engineering, 2004. 88(3): p. 343-349.
2. Fazayeli, A., et al., Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 2019.
3. Zhu, X., et al., Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 2012. 109(2): p. 258-266.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zeng Liming1, Preda Ioana2, Bapst Nicolas2, Pernet Arnaud1, Siebert Priscilla1, Cléroux Marilyn1 and Mertenat Muriel1

1Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Nyon, Switzerland
2iPrint Institute, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Fribourg, Switzerland

Contact the author

Keywords

Alcoholic fermentation; capacitive sensor; frequency domain spectroscopy; dipolar and ionic polarization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vintage influence on Grenache N, Syrah N and Mourvedre N in Côtes du Rhône (France)

Vintage is part of « terroir ». The aim of this work is to study, through vine and berry parameters, the effect of vintage on the three major red grape varieties in Côtes du Rhône : Grenache N, Syrah N and Mourvedre N. We first characterized vintages 1997 to 2003, highlighting similar features in grape development across the different cultivars since 2001 only.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Aroma and mouthfeel cues are the main characteristics defining red wine quality. During wine tasting, perceptual and physical-chemical phenomena leading to mutual interactions between volatiles and non-volatiles sensory active compounds, can occur. Aroma perception depends on the release of volatiles from wine, that is affected by wine constituents present in the medium (Pittari et al. 2021; Lyu et al. 2021). Our aim was to evaluate the effect of the non-volatile wine matrix composition (polyphenols, PPh) on the release and perception of red wine aromas by an experiment of matrix enrichment.

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.