IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Abstract

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.The main objective of this study is to evaluate this technology’s potential to offer a new indicator of alcoholic fermentation during wine production. Synthetic solutions with only one component (fructose, glucose and alcohol) and several components imitating alcoholic fermentation were measured. Initially, two temperatures (18°C and 28°C) were used for simple solutions measurement and the results showed a significant impact of the temperature. At 18°C, simple solutions of fructose and alcohol at different concentrations were well distinguished but not at 28°C. Furthermore, the results were found to be dependent on the electrode measuring system (2 or 4 electrodes exhibit different results) but not on the type of electric excitation (sinusoidal excitation or a combination of two different excitation waves). While analyzing the data, strong correlations (>0,95) were found between the impedance values and the type of investigated solutions. This indicated the high potential of this technology as a new indicator for alcoholic fermentation control.   

References

1. Garcı́a, A., et al., Dielectric characteristics of grape juice and wine. Biosystems Engineering, 2004. 88(3): p. 343-349.
2. Fazayeli, A., et al., Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 2019.
3. Zhu, X., et al., Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 2012. 109(2): p. 258-266.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zeng Liming1, Preda Ioana2, Bapst Nicolas2, Pernet Arnaud1, Siebert Priscilla1, Cléroux Marilyn1 and Mertenat Muriel1

1Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Nyon, Switzerland
2iPrint Institute, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Fribourg, Switzerland

Contact the author

Keywords

Alcoholic fermentation; capacitive sensor; frequency domain spectroscopy; dipolar and ionic polarization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

First step in the preparation of a soil map of the Protected Designation of Origin Valdepeñas (Central, Spain)

This work is a first step to make a map of vineyard soils. The characterization of the soils of the Protected Designation of Origin (D.P.O.) Valdepeñas will allow to group the studied profiles according to their physico-chemical characteristics and the concentrations of most relevant chemical elements. 90 soil profiles were analysed throughout the territory and the soils were sampled and described according to FAO (2006) and classified according to and Soil Taxonomy (2014). All samples were air dried, sieved and some physico-chemical parameters were determined following standard protocols. Also, major and trace elements were analysed by X-ray fluorescence. The statistically study was made using the SPSS program. Trend maps were made using the ArcGIS program. The studied soils have the following average properties: pH, 8.3; electrical conductivity, 0,20 dS/m (low); clay, 18.8% (medium) and CaCO3, 17.1% (high). In the study for the major elements. The major elements of these soils are Si, followed by Ca and Al, with an average content of 203.7 g/kg, 105.5 g/kg and 74.0 g/kg respectively. On the other hand, 27 trace elements have been studied. Of all of them, it can be highlighted the average values of Ba (361.8 mg/kg), Sr (129.3 mg/kg), Rb (83.4 mg/kg), V (74.2 mg/kg) and Ce (70.6 mg/kg). Ba, V and Ce values are higher and the values of Sr and Rb are lower to those found in the literature. The discriminant analysis shows a percentage of grouping of 91%. The content of chemical elements together with the physico-chemical characteristics allows grouping the soils in 4 group according to their order in the classification to Soil Taxonomy; due to the importance of the Calcisols in Castilla-La Mancha, it has been decided to establish them as their own group even if they do not appear in Soil Taxonomy classification.

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

The Fontevraud charter in favour of the viticultural landscapes

The viticultural regions of the world have the advantage of a remarkable diversity of landscapes which are the reflection of the winegrowers’ capacity to adapt to the different geomorphological and climatic specificities of the terroirs, more generally speaking, this aesthetic and heritage aspect of the terroir is also part and parcel of the notion of sustainable viticulture.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.