IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Abstract

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.The main objective of this study is to evaluate this technology’s potential to offer a new indicator of alcoholic fermentation during wine production. Synthetic solutions with only one component (fructose, glucose and alcohol) and several components imitating alcoholic fermentation were measured. Initially, two temperatures (18°C and 28°C) were used for simple solutions measurement and the results showed a significant impact of the temperature. At 18°C, simple solutions of fructose and alcohol at different concentrations were well distinguished but not at 28°C. Furthermore, the results were found to be dependent on the electrode measuring system (2 or 4 electrodes exhibit different results) but not on the type of electric excitation (sinusoidal excitation or a combination of two different excitation waves). While analyzing the data, strong correlations (>0,95) were found between the impedance values and the type of investigated solutions. This indicated the high potential of this technology as a new indicator for alcoholic fermentation control.   

References

1. Garcı́a, A., et al., Dielectric characteristics of grape juice and wine. Biosystems Engineering, 2004. 88(3): p. 343-349.
2. Fazayeli, A., et al., Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 2019.
3. Zhu, X., et al., Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 2012. 109(2): p. 258-266.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Zeng Liming1, Preda Ioana2, Bapst Nicolas2, Pernet Arnaud1, Siebert Priscilla1, Cléroux Marilyn1 and Mertenat Muriel1

1Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Nyon, Switzerland
2iPrint Institute, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Fribourg, Switzerland

Contact the author

Keywords

Alcoholic fermentation; capacitive sensor; frequency domain spectroscopy; dipolar and ionic polarization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Teran grape quality influenced by different irrigation treatments

Teran is an important native variety grown in Istria known for its high level of polyphenols and intensive fruity character of wines. Teran’s yield and wine typicity have recently decreased due to climate changes (increased temperature and severe drought). Four drip irrigation treatments (25%, 50%, 75%, 100% of total evapotranspiration) and control were investigated for the influence on Teran yield and quality, where focus was given to the content and composition of main polyphenolic and volatile compounds in grapes. Irrigation positively influenced yield since the berry weight also increased with increased irrigation. This resulted in the highest yield for 100% ETc. The highest concentration of polyphenols had control, while the irrigation treatments did not differ significantly. However, there was a tendency to decrease concentration with increased irrigation probably due to the increased berry size, which led to a dilution effect. Regarding the volatile compounds, the most abundant group was alcohols, followed by acids.

L’essor des produits “No-Low” : nouveaux défis pour l’étiquetage et la réglementation

In recent years, “no-low” products seem to become a new worldwide trend. It appears to be a possible answer to the well-known context of climate change, the decline in wine consumption, and the wellness/health trend (“free from” claims, vegan, and so on…) That consumers are looking for. The aim of this study is to provide an overview of the “no-low” products sold in the french market (but not only french products), focusing on the labelling, packaging, and sales presentation of these products.

Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Phenolic compounds are very importants in crop plants, which is why there have been the subject of a large number of studies

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation