IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

Abstract

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.
The wine-making method of Tokaj wine specialities often gives a serious microbiological challenge to winemakers. Increasing the volatile acid content of wines is becoming more frequent, one of the technological ways to keep them lower is the use of special chitosan products, which have an inhibitory and cid effect on acetic and lactic acid bacteria.
The BactilessTM® preparation distributed by Kokoferm Ltd. and EnartisSTAB Micro by Esseco s.r.l (Divisione Enartis) are GMO and allergen-free biopolymer of Aspergillus niger, what can reduce the germ count of live acetic and lactic acid bacteria.
Phenolic compounds are responsible for the oxidation of wines, and their presence is essential for developing the character of the wine. During grape proccessing procedure, it is very important to pay particular attention to polyphenols releasing from the berry skin and seed coat because in contact with a small amount of oxygen, it can be formed with oxide compounds accompanied by masking fruitiness, hindering transformation of aroma-carrying precursors. In the case of working with noble rotted berries, an increased polyphenol content can be found endangering taste harmony, that is why every treatment with reducing polyphenols effect may be useful.
In this work, three Tokaj aszú wine types were tested with Bactiless and EnartisSTAB materials. The number of germs of lactic acid bacteria was significantly reduced by the treatments, it was no longer detectable at the higher application dose, it was also effective against acetic acid bacteria, and their amount decreased by an order of magnitude. During the treatment period, the level of volatile acid did not increase, and the amount of undesirable odor metabolites also decreased appreciably. Despite the fact, that the primary function of active chitosans is antimicrobial control, the polyphenol content has also been reduced by 5-8%.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bene Zsuzsanna1

1University of Tokaj, Lórántffy Institute, Department of Viticulture and Oenology

Contact the author

Keywords

acetic acid and lactic acid bacteria, chitosan, polyphenols, Tokaj

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations.

Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

AIM: Many research studies have analyzed the effect of polysaccharides in the aromatic composition of white wines.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).