IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

Abstract

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.
The wine-making method of Tokaj wine specialities often gives a serious microbiological challenge to winemakers. Increasing the volatile acid content of wines is becoming more frequent, one of the technological ways to keep them lower is the use of special chitosan products, which have an inhibitory and cid effect on acetic and lactic acid bacteria.
The BactilessTM® preparation distributed by Kokoferm Ltd. and EnartisSTAB Micro by Esseco s.r.l (Divisione Enartis) are GMO and allergen-free biopolymer of Aspergillus niger, what can reduce the germ count of live acetic and lactic acid bacteria.
Phenolic compounds are responsible for the oxidation of wines, and their presence is essential for developing the character of the wine. During grape proccessing procedure, it is very important to pay particular attention to polyphenols releasing from the berry skin and seed coat because in contact with a small amount of oxygen, it can be formed with oxide compounds accompanied by masking fruitiness, hindering transformation of aroma-carrying precursors. In the case of working with noble rotted berries, an increased polyphenol content can be found endangering taste harmony, that is why every treatment with reducing polyphenols effect may be useful.
In this work, three Tokaj aszú wine types were tested with Bactiless and EnartisSTAB materials. The number of germs of lactic acid bacteria was significantly reduced by the treatments, it was no longer detectable at the higher application dose, it was also effective against acetic acid bacteria, and their amount decreased by an order of magnitude. During the treatment period, the level of volatile acid did not increase, and the amount of undesirable odor metabolites also decreased appreciably. Despite the fact, that the primary function of active chitosans is antimicrobial control, the polyphenol content has also been reduced by 5-8%.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bene Zsuzsanna1

1University of Tokaj, Lórántffy Institute, Department of Viticulture and Oenology

Contact the author

Keywords

acetic acid and lactic acid bacteria, chitosan, polyphenols, Tokaj

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

Wine as cultural national heritage: 10 years of the “Vino Bebida Nacional” law in Argentina: review and lessons

Ten years have passed since the enactment and implementation of law no. 26,870 “national drink wine” in Argentina, a pioneering legislation worldwide that seeks to disseminate the cultural characteristics inherent in the production, elaboration, and consumption of wine, as well as its deep-rooted traditions.

Remote sensing and radiometric techniques applied to vineyards in two regions of Rio Grande do Sul, Brazil

The observation of Earth by satellites has demonstrated the feasibility of establishing differences between plant species, from their spectral features. The reflectance spectrum of vine plants follows this trend, being possible to identify vineyards in satellite images, among other species.