IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

Abstract

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.
The wine-making method of Tokaj wine specialities often gives a serious microbiological challenge to winemakers. Increasing the volatile acid content of wines is becoming more frequent, one of the technological ways to keep them lower is the use of special chitosan products, which have an inhibitory and cid effect on acetic and lactic acid bacteria.
The BactilessTM® preparation distributed by Kokoferm Ltd. and EnartisSTAB Micro by Esseco s.r.l (Divisione Enartis) are GMO and allergen-free biopolymer of Aspergillus niger, what can reduce the germ count of live acetic and lactic acid bacteria.
Phenolic compounds are responsible for the oxidation of wines, and their presence is essential for developing the character of the wine. During grape proccessing procedure, it is very important to pay particular attention to polyphenols releasing from the berry skin and seed coat because in contact with a small amount of oxygen, it can be formed with oxide compounds accompanied by masking fruitiness, hindering transformation of aroma-carrying precursors. In the case of working with noble rotted berries, an increased polyphenol content can be found endangering taste harmony, that is why every treatment with reducing polyphenols effect may be useful.
In this work, three Tokaj aszú wine types were tested with Bactiless and EnartisSTAB materials. The number of germs of lactic acid bacteria was significantly reduced by the treatments, it was no longer detectable at the higher application dose, it was also effective against acetic acid bacteria, and their amount decreased by an order of magnitude. During the treatment period, the level of volatile acid did not increase, and the amount of undesirable odor metabolites also decreased appreciably. Despite the fact, that the primary function of active chitosans is antimicrobial control, the polyphenol content has also been reduced by 5-8%.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bene Zsuzsanna1

1University of Tokaj, Lórántffy Institute, Department of Viticulture and Oenology

Contact the author

Keywords

acetic acid and lactic acid bacteria, chitosan, polyphenols, Tokaj

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

L’effet du climat viticole sur la typicité des vins rouges: caractérisation au niveau des régions viticoles Ibéro-Américaines

Il n’existe presque pas d’études qui caractérisent l’effet du climat viticole sur la typicité des vins en considérant les différents types de climats à l’échelle mondiale. Cette étude fait partie d’un projet CYTED de zonage vitivinicole. L’objectif a été de caractériser l’effet du climat viticole sur la typicité des vins sur une macro région viticole du monde.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]).