IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Viticultural and enological strategies for the prevention of Botrytis cinerea- induced quality losses

Viticultural and enological strategies for the prevention of Botrytis cinerea- induced quality losses

Abstract

Infection of the grapes with Botrytis cinerea has a tremendous impact on the resulting crop yield and quality. Well-known problems that are associated with B. cinerea are specific off-flavors, poor filterability, and brownish color in white wines. The development of a B. cinerea infection strongly depends on weather conditions and is highly variable through different vintages. Typical control measures include defoliation and the use of fungicides, which involves high personnel and material costs. They also involve a great risk, especially since the effectiveness and time point of these treatments are difficult to predict. The frequency and severity of B. cinerea infections in Germany will increase due to climate change-induced alteration of weather conditions and the rise of new pathogen strains. In warmer, drier years, heavy Botrytis infection has already been observed, indicating the development of more aggressive strains. Common practices to deal with the negative effects of Botrytis on wine quality have been demonstrated to be ineffective and need to be reconsidered. To approach this problem, first experiments investigating oenological usage of coal and tannins in Botrytis infested must have been conducted. Sensory analysis and CATA confirmed, that common practices are not sufficient enough to battle Botrytis induced off-flavors. According to our results no clear positive effect of tannin treatment could be observed. To obtain more insight into the diversity of Botrytis strains, a PCR fingerprinting method is going to be established, as well as a qPCR method for biomass detection in to obtain more knowledge about climate based developments of B. cinerea. A method for detecting Botrytis induced aroma compounds like Geosmine and 1- Octen- 3-ol, was optimized by using a new CG-MS method. First results show success in validating different strains as well as detecting different aroma compounds in GC-MS.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Backmann Louis1, Umberath Kim-Marie2, Wegmann-Herr Pascal1 and Scharfenberg-Schmeer Maren3

1Institute for Viticulture and Enology (DLR-Rheinpfalz)
2Institute of Nutritional and Food Sciences, Bonn
3Microbiology, HS Kaiserslautern 

Contact the author

Keywords

Botrytis,enological treatments, sensory analysis,PCR, qPCR, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Natural variability and vine-growers behaviour

Le vigneron est confronté à une variabilité naturelle omniprésente, liée au millésime et aux facteurs pédoclimatiques. Depuis 10 ans, en Champagne, la relation qu’entretient le vigneron avec l’espace a évolué. Les exemples d’entreprises collectives à vocation territoriale se sont multipliés : gestion de l’hydraulique viticole, maillages de groupements de conseil viticole (Magister), sites en confusion sexuelle, réseau maturation, analyses de sols par secteur, …

Studio preliminare sulla microzonazione Bioclimatica condotto in un’area viticola collinare

La caratterizzazione bioclimatica del territorio rappresenta un elemento sempre più impor­tante per il miglioramento dell’ attività agricola. La conoscenza degli andamenti assunti dai parametri meteorologici puà consentire di individuare le peculiarità dei singoli appezzamenti aziendali, ottimizzando le scelte sia in termini tattici (esecuzione dei più opportuni interventi colturali) che strategici (scelta delle specie o varietà più idonee a valorizzare ciascun am­biente).

Tracking innovations for glyphosate-free in sloppy or terraced vineyard

Context and purpose of the study. Reducing pesticide use such as glyphosate, is a key challenge to support sustainability of viticulture systems and resilience of vineyard.

Focus on terroir studies in the eger wine region of Hungary

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

Lamp – a modern tool for the detection of fungal infections in the vineyard

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry.