IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Viticultural and enological strategies for the prevention of Botrytis cinerea- induced quality losses

Viticultural and enological strategies for the prevention of Botrytis cinerea- induced quality losses

Abstract

Infection of the grapes with Botrytis cinerea has a tremendous impact on the resulting crop yield and quality. Well-known problems that are associated with B. cinerea are specific off-flavors, poor filterability, and brownish color in white wines. The development of a B. cinerea infection strongly depends on weather conditions and is highly variable through different vintages. Typical control measures include defoliation and the use of fungicides, which involves high personnel and material costs. They also involve a great risk, especially since the effectiveness and time point of these treatments are difficult to predict. The frequency and severity of B. cinerea infections in Germany will increase due to climate change-induced alteration of weather conditions and the rise of new pathogen strains. In warmer, drier years, heavy Botrytis infection has already been observed, indicating the development of more aggressive strains. Common practices to deal with the negative effects of Botrytis on wine quality have been demonstrated to be ineffective and need to be reconsidered. To approach this problem, first experiments investigating oenological usage of coal and tannins in Botrytis infested must have been conducted. Sensory analysis and CATA confirmed, that common practices are not sufficient enough to battle Botrytis induced off-flavors. According to our results no clear positive effect of tannin treatment could be observed. To obtain more insight into the diversity of Botrytis strains, a PCR fingerprinting method is going to be established, as well as a qPCR method for biomass detection in to obtain more knowledge about climate based developments of B. cinerea. A method for detecting Botrytis induced aroma compounds like Geosmine and 1- Octen- 3-ol, was optimized by using a new CG-MS method. First results show success in validating different strains as well as detecting different aroma compounds in GC-MS.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Backmann Louis1, Umberath Kim-Marie2, Wegmann-Herr Pascal1 and Scharfenberg-Schmeer Maren3

1Institute for Viticulture and Enology (DLR-Rheinpfalz)
2Institute of Nutritional and Food Sciences, Bonn
3Microbiology, HS Kaiserslautern 

Contact the author

Keywords

Botrytis,enological treatments, sensory analysis,PCR, qPCR, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions.

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

Non-invasive quantification of phenol content during red wine fermentations

Phenolic compounds are responsible for the most important red wine quality attributes. Anthocyanins and tannins play crucial roles in color and mouthfeel properties of red wines. Phenolic analysis in the winery is hindered by analytical constrains.

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.