IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Abstract

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle. Employing a complete 2-levels/3-factors systematic experimental design (8 theses in triplicates), this study primarily aimed at evaluating the effects of 1) pre-fermentative grape freezing, 2) fermentative maceration, and 3) co-inoculum of yeasts with malolactic bacteria, on the Schiava chemical profile and its overtime evolution, considering also potential interacting factors. The measured parameters included basic enological determinations (e.g. residual sugars, organic acids and alcohol content, measured by specific enzymatic methods or by official methods), quantitative or semi-quantitative phenolic determinations (anthocyanins and derivatives, non-anthocyanins phenolics and condensed tannins – major and minor components – analyzed by LC-QqQ/MS [1]) and the volatile aroma profile (determined by HS-SPME-GCxGC-ToF/MS [2]). In particular, the effects of the applied treatments on the content of specific chemical markers (e.g. highly polar minor condensed tannins [3]) have been highlighted. Besides, a dependance of the ratio between the two main Schiava’s anthocyanins (peonidin-3O-glu and malvidin-3O-glu) on the applied pre-fermentative (e.g. grape freezing) and fermentative (e.g. co-inoculum with malolactic bacteria) conditions was observed [4,5]. Finally, the profile of the major and minor cyclic (high-polarity) condensed tannins was investigated over fining and stabilization steps.

References

[1] Dupas de Matos, A., Longo, E., et al. (2020). Foods, 9(4), 499
[2] Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, 26(20),    6245
[3] Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, 299, 125125
[4] Vivas, N., Lonvaud-Funel, A., & Glories, Y. (1997). Food Microbiology, 14(3), 291-299
[5] Devi, A., Anu-Appaiah, K. A. (2020). American Journal of Enology and Viticulture, 71(2), 105-113

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Longo Edoardo1, Poggesi Simone1, Merkytè Vakarè1, Windisch Giulia1, Mimmo Tanja1 and  Boselli Emanuele1

1Faculty of Science and Technology, Free University of Bozen-Bolzano 

Contact the author

Keywords

Schiava, Vernatsch, winemaking, phenolic compounds, wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.

Longevity and moderate wine consumption – can guidelines provide practical advice?

Conflicting messages about the consumption of alcoholic beverages – including wine – continue to dominate the media, causing increasing uncertainty among consumers and health professionals.

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

Citizen science for promoting a disease-resistant grape variety through a wine competition

The societal pressure to reduce the use of pesticides in Switzerland is steadily increasing. Viticulture is particularly in focus due to the frequent use of fungicides to combat downy and powdery mildew.

Genetic and hormonal regulation of grape berry cuticle formation

The plant surface typically comprises of various epidermal cell types which synthesise and deposit a protective waxy layer known as the cuticle. The cuticle is a significant contributor to important crop traits related to drought tolerance, biotic stress, postharvest fruit quality as well as providing structural support. In this work we have investigated grape berry cuticle formation in the context of the accumulation of anti-fungal specialised metabolites and the ability of the cuticle to structurally cope with the rapid expansion of ripening berries. Metabolic QTL analysis was performed in a grapevine cross population, using chemical profiling data collected via GC-MS analysis for cuticular waxes.