IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Abstract

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle. Employing a complete 2-levels/3-factors systematic experimental design (8 theses in triplicates), this study primarily aimed at evaluating the effects of 1) pre-fermentative grape freezing, 2) fermentative maceration, and 3) co-inoculum of yeasts with malolactic bacteria, on the Schiava chemical profile and its overtime evolution, considering also potential interacting factors. The measured parameters included basic enological determinations (e.g. residual sugars, organic acids and alcohol content, measured by specific enzymatic methods or by official methods), quantitative or semi-quantitative phenolic determinations (anthocyanins and derivatives, non-anthocyanins phenolics and condensed tannins – major and minor components – analyzed by LC-QqQ/MS [1]) and the volatile aroma profile (determined by HS-SPME-GCxGC-ToF/MS [2]). In particular, the effects of the applied treatments on the content of specific chemical markers (e.g. highly polar minor condensed tannins [3]) have been highlighted. Besides, a dependance of the ratio between the two main Schiava’s anthocyanins (peonidin-3O-glu and malvidin-3O-glu) on the applied pre-fermentative (e.g. grape freezing) and fermentative (e.g. co-inoculum with malolactic bacteria) conditions was observed [4,5]. Finally, the profile of the major and minor cyclic (high-polarity) condensed tannins was investigated over fining and stabilization steps.

References

[1] Dupas de Matos, A., Longo, E., et al. (2020). Foods, 9(4), 499
[2] Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, 26(20),    6245
[3] Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, 299, 125125
[4] Vivas, N., Lonvaud-Funel, A., & Glories, Y. (1997). Food Microbiology, 14(3), 291-299
[5] Devi, A., Anu-Appaiah, K. A. (2020). American Journal of Enology and Viticulture, 71(2), 105-113

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Longo Edoardo1, Poggesi Simone1, Merkytè Vakarè1, Windisch Giulia1, Mimmo Tanja1 and  Boselli Emanuele1

1Faculty of Science and Technology, Free University of Bozen-Bolzano 

Contact the author

Keywords

Schiava, Vernatsch, winemaking, phenolic compounds, wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Global climate change affects regional climates and hold implications for wine growing regions worldwide

Enological technics to enhance the aromatic qualities of white spirits 

Eugenol has been identified as a quality marker in armagnac white spirits. In particular, those produced from the Baco blanc variety, the only hybrid variety authorised in a French PDO, bred since 1898 from noah (vitis labrusca x v.riparia) and folle blanche (v. Vinifera). The varietal compound of Baco blanc, eugenol has many original properties.

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).