WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Water is the most abundant active compound in wine!

Water is the most abundant active compound in wine!

Abstract

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition. The dominant relaxation mechanism unambiguously originates from proton interaction with paramagnetic ions naturally present in wines. This allows for gathering information on these paramagnetic ions, and in particular, manganese ion concentration, down to few tens of µg/L can be easily measured in situ. In this communication, we will further show how chemical and physical characteristics of the wine, including the oxidation level, the concentration in dissolved gas, or the viscosity can affect the proton relaxation rates, thus making water an active chemical probe of a wine properties.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Philippe Bodart, Syuzanna, Esoyan, Adam Rachocki, Jadwiga Tritt-Goc, Bernhard Michalke, Philippe Schmitt-Kopplin, Thomas Karbowiak, Regis D. Gougeon

Presenting author

Philippe Bodart – UMR A 02.102 PAM Université de Bourgogne/Agrosup Dijon – Equipe Physico-Chimie de l’Aliment et du Vin (PCAV)

Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France. | Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland. | Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland. | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany. | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany. – Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany. | Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France. | Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France.

Contact the author

Keywords

proton NMR relaxometry – manganese

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Aroma composition of young and aged Lugana and Verdicchio

AIM Verdicchio and Lugana are two Italian white wines produced in the Marche and Garda lake regions respectively. They are however obtained using grape varieties sharing the same genetic background, locally known as Verdicchio in Marche and Trebbiano di Soave in Garda. Anecdotal evidence suggests that these two wine types exhibit distinctive aroma features. The aim of this work was to explore the existence of a recognizable odour profile for Lugana and Verdicchio, and whether specific aroma chemical markers could be identified. METHODS 13 commercial wines, 6 Lugana and 7 Verdicchio were used. Sensory analysis was done using sorting task methodology, assessing only odor similarities. A total of 53 volatile compounds were identified and quantified GC-MS analysis. Aging behaviors were also evaluated after an accelerated aging at 40 ° C for 3 months. RESULTS HCA analysis of sorting task data identified indeed two groups: one characterized by floral and minty notes and mostly associated with Lugana wines, the other characterized by spicy and toasted aromas and mostly associated with Verdicchio. From a chemical point of view, major differences between the two wines types were observed for cis-3-hexenol, methionol, phenylethyl alcohol, and geraniol.

Drought stress shapes the fungal microbiome of grapevine leaves: insights from DNA metabarcoding

Drought stress is an increasingly prevalent environmental challenge with implications for grapevine physiology and productivity, as well as for the microbiomes associated with grapevine tissues.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Montpellier vine & wine sciences (M-WineS)

The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.