WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Water is the most abundant active compound in wine!

Water is the most abundant active compound in wine!

Abstract

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition. The dominant relaxation mechanism unambiguously originates from proton interaction with paramagnetic ions naturally present in wines. This allows for gathering information on these paramagnetic ions, and in particular, manganese ion concentration, down to few tens of µg/L can be easily measured in situ. In this communication, we will further show how chemical and physical characteristics of the wine, including the oxidation level, the concentration in dissolved gas, or the viscosity can affect the proton relaxation rates, thus making water an active chemical probe of a wine properties.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Philippe Bodart, Syuzanna, Esoyan, Adam Rachocki, Jadwiga Tritt-Goc, Bernhard Michalke, Philippe Schmitt-Kopplin, Thomas Karbowiak, Regis D. Gougeon

Presenting author

Philippe Bodart – UMR A 02.102 PAM Université de Bourgogne/Agrosup Dijon – Equipe Physico-Chimie de l’Aliment et du Vin (PCAV)

Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France. | Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland. | Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland. | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany. | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany. – Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany. | Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France. | Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France.

Contact the author

Keywords

proton NMR relaxometry – manganese

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Grapevine rootstock field evaluation under drought and saline condition in California

Climate change impacts grape production worldwide and in California drought and salinity became increasingly challenging for grape growers to maintain sustainable production and fruit quality.

Morphological image analysis for determining bunch grape characteristics: A case study on bunch weight in Cabernet-Sauvignon

Morphological image analysis is a powerful technique used in various fields, including agriculture, to quantitatively assess the physical characteristics of objects. In viticulture, the accurate assessment of grapevine characteristics is essential for optimizing crop management and improving the quality of wine production.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

The effects of soil health management practices on soil organic carbon persistence and accrual in vineyards

Context and purpose of the study. Climate change is already threatening California vineyards, as they grapple with increasing extreme weather events and drier growing seasons.

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.