WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Water is the most abundant active compound in wine!

Water is the most abundant active compound in wine!

Abstract

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition. The dominant relaxation mechanism unambiguously originates from proton interaction with paramagnetic ions naturally present in wines. This allows for gathering information on these paramagnetic ions, and in particular, manganese ion concentration, down to few tens of µg/L can be easily measured in situ. In this communication, we will further show how chemical and physical characteristics of the wine, including the oxidation level, the concentration in dissolved gas, or the viscosity can affect the proton relaxation rates, thus making water an active chemical probe of a wine properties.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Philippe Bodart, Syuzanna, Esoyan, Adam Rachocki, Jadwiga Tritt-Goc, Bernhard Michalke, Philippe Schmitt-Kopplin, Thomas Karbowiak, Regis D. Gougeon

Presenting author

Philippe Bodart – UMR A 02.102 PAM Université de Bourgogne/Agrosup Dijon – Equipe Physico-Chimie de l’Aliment et du Vin (PCAV)

Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France. | Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland. | Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland. | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany. | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany. – Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany. | Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France. | Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France.

Contact the author

Keywords

proton NMR relaxometry – manganese

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Organic recycled mulches in sustainable viticulture: assessment of spontaneous plants communities and weed coverage

In recent years, developing more efficient and sustainable viticulture management has been essential due to the impact of climate change in semiarid regions. For this reason, the use of recycled organic mulching (ROM) in the vineyard has become an interesting strategy to cope with water stress, isolated soil from extreme temperatures and improving soil humidity, control the presence of weeds and therefore reduce the inputs of herbicides and improve soil fertility. This work aimed to analyse the effect of three different organic mulches [straw (S), grape pruning debris (GPD) and spent mushroom compost (SMC)] and two traditional soil management techniques [herbicide (H) and interrow (IN)] on weed coverage and the spontaneous plant communities’ presence. Data sampling was collected throughout the vine vegetative cycle of 2021 in La Rioja, Spain. The different soil management techniques had a clear effect on weed coverage and his development during the vine vegetative cycle. SMC and H were the treatments with the highest and the lowest coverage percentage, respectively. IN had a delayed weed emergence at the beginning of the vine vegetative cycle, but finally it reached maximum values nearby SMC. GPD and S had similar effects on weed emergence, reaching 25-30% of the maximum coverage values. A total of 29 herbaceous species were identified during the vegetative cycle, some of them very isolated and occasional. Principal component analysis (PCAs) showed a good association between spontaneous species and treatments, furthermore, specific species-treatment associations were found. Moreover, three clear groups of herbaceous communities were identified by cluster analysis. This study provides interesting information about the effect of different alternative soil management on herbaceous plant coverage and weed species communities which could contribute to making more sustainable viticulture.

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma.

Étude des relations sol-vigne sur le vignoble de Côte Rôtie

La topographie du vignoble de Côte Rôtie, la prédominance de la non culture ainsi que la structure très légère des sols amènent les vignerons à s’interroger sur l’entretien du sol, la conduite de la fertilisation de leurs parcelles ainsi que sur le développement racinaire de la vigne.