WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Oenotannins addition in wine: can be the modulation of redox potential predictable?

Oenotannins addition in wine: can be the modulation of redox potential predictable?

Abstract

The purpose of this research was to study the interaction between oenotannins and wine matrix in order to design a targeted oenotannins addition for modulating the redox status of wine. It is in fact known that oenotannins can regulate the redox potential of musts and wines since they are electroactive substances (1).

To this aim, the present study was divided in two steps:

(i)        twenty different commercial tannin preparations (including condensed and hydrolysable tannins) were characterized in order to prepare three oenotannins mixtures suitable for diverse modulations of the redox potential in wine (increase, decrease and stabilize). In particolar, tannins were dissolved in a model wine solution (12% alcohol, pH 3.5 with tartaric acid) and analyzed to determine the total polyphenol content, anti-radical activity, polyphenolic composition by HPLC-MS, and reactivity with proteins. The effect of tannins on the redox potential modulation was monitored for 48 hours after addition to the model wine solution, in standard condition (20 °C, no oxygen) as suggested by Vivas et al. (2);

(ii)        the three oenotannins mixtures obtained were added to eight different red and white wines with the aim of modulating their redox potential. Wines were chemically analyzed and the redox potential monitored for three months.

The results here obtained highlighted that commercial oenotannins, when added to the model wine solution, showed a different impact in the redox potential: condensed tannins from grape seed, quebracho and tea showed the ability to raise the redox potential; hydrolysable tannins from gallnuts and tara showed an important increase in redox potential, as well as for some oenotannins derived from oak. In this last case, the ability to modulate the redox potential (increase or decrease) was linked to the wood origin, toasting and drying prior the tannins extraction.

The three oenotannins mixtures added to the red and white wines affected their chemical composition  as well as their redox potential.

A PLS1 model was successfully built using the wine chemical parameters and the redox potential monitored for three months, in order to predict the redox status of wines through the oenotannins addition.

Reference: 1) Vivas, N. (2003) In: Prodotti di trattamento ed ausiliari di elaborazione dei mosti e dei vini. Ed. Eno-one srl.; 2) Vivas, N., Glories, Y., Bertrand, A. and Zamora, F. (1996) Bulletin OIV 69, 617-633.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Valentina, Canuti, Francesco, Maioli, Lorenzo, Cecchi, Monica, Picchi

Presenting author

Valentina, Canuti – Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy

Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy | Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy | Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy, Luigi, Sanarica. Enolife SrL, Montemesola (TA), ,

Contact the author

Keywords

oenotannins, redox potential, PLS model

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils.

Evaluation of winegrape anthocyanins in the vineyard using a portable fluorimetric sensor: seasonal and water regime effects

Accumulation of anthocyanins (Anth) on whole winegrape (Vitis vinifera L.) bunches attached to the vine was monitored by a fluorescence-based sensor (Multiplex) on ‘Aleatico’ and ‘Nero d’Avola’. Different water regimes were applied.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.

Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

La caratterizzazione della frazione volatile aromatica dei vini attraverso l’analisi quali­quantitativa dei diversi composti, ha portato corne primo risultato la netta differenziazione delle annate in prova.

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.