WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Oenotannins addition in wine: can be the modulation of redox potential predictable?

Oenotannins addition in wine: can be the modulation of redox potential predictable?

Abstract

The purpose of this research was to study the interaction between oenotannins and wine matrix in order to design a targeted oenotannins addition for modulating the redox status of wine. It is in fact known that oenotannins can regulate the redox potential of musts and wines since they are electroactive substances (1).

To this aim, the present study was divided in two steps:

(i)        twenty different commercial tannin preparations (including condensed and hydrolysable tannins) were characterized in order to prepare three oenotannins mixtures suitable for diverse modulations of the redox potential in wine (increase, decrease and stabilize). In particolar, tannins were dissolved in a model wine solution (12% alcohol, pH 3.5 with tartaric acid) and analyzed to determine the total polyphenol content, anti-radical activity, polyphenolic composition by HPLC-MS, and reactivity with proteins. The effect of tannins on the redox potential modulation was monitored for 48 hours after addition to the model wine solution, in standard condition (20 °C, no oxygen) as suggested by Vivas et al. (2);

(ii)        the three oenotannins mixtures obtained were added to eight different red and white wines with the aim of modulating their redox potential. Wines were chemically analyzed and the redox potential monitored for three months.

The results here obtained highlighted that commercial oenotannins, when added to the model wine solution, showed a different impact in the redox potential: condensed tannins from grape seed, quebracho and tea showed the ability to raise the redox potential; hydrolysable tannins from gallnuts and tara showed an important increase in redox potential, as well as for some oenotannins derived from oak. In this last case, the ability to modulate the redox potential (increase or decrease) was linked to the wood origin, toasting and drying prior the tannins extraction.

The three oenotannins mixtures added to the red and white wines affected their chemical composition  as well as their redox potential.

A PLS1 model was successfully built using the wine chemical parameters and the redox potential monitored for three months, in order to predict the redox status of wines through the oenotannins addition.

Reference: 1) Vivas, N. (2003) In: Prodotti di trattamento ed ausiliari di elaborazione dei mosti e dei vini. Ed. Eno-one srl.; 2) Vivas, N., Glories, Y., Bertrand, A. and Zamora, F. (1996) Bulletin OIV 69, 617-633.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Valentina, Canuti, Francesco, Maioli, Lorenzo, Cecchi, Monica, Picchi

Presenting author

Valentina, Canuti – Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy

Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy | Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy | Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy, Luigi, Sanarica. Enolife SrL, Montemesola (TA), ,

Contact the author

Keywords

oenotannins, redox potential, PLS model

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

On quality assurance of winemaking components

This report examines product quality assurance issues arising when technological aids and food additives are utilized in winemaking.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Importance des propriétés optiques de la surface du sol sur le microclimat de la vigne. Répercussions de l’usage d’un revêtement de sol réfléchissant sur la composition des moûts et sur la qualité du vin

Cette recherche a eu pour but l’étude des effets d’un renforcement radiatif et thermique sur les zones inférieures de la canopée de la vigne (solarisation par des films ou des paillages réfléchissants installés sur le sol, sous les ceps), notamment l’étude de leurs conséquences sur la composition biochimique des moûts à la vendange et sur la qualité des vins.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.