WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Oenotannins addition in wine: can be the modulation of redox potential predictable?

Oenotannins addition in wine: can be the modulation of redox potential predictable?

Abstract

The purpose of this research was to study the interaction between oenotannins and wine matrix in order to design a targeted oenotannins addition for modulating the redox status of wine. It is in fact known that oenotannins can regulate the redox potential of musts and wines since they are electroactive substances (1).

To this aim, the present study was divided in two steps:

(i)        twenty different commercial tannin preparations (including condensed and hydrolysable tannins) were characterized in order to prepare three oenotannins mixtures suitable for diverse modulations of the redox potential in wine (increase, decrease and stabilize). In particolar, tannins were dissolved in a model wine solution (12% alcohol, pH 3.5 with tartaric acid) and analyzed to determine the total polyphenol content, anti-radical activity, polyphenolic composition by HPLC-MS, and reactivity with proteins. The effect of tannins on the redox potential modulation was monitored for 48 hours after addition to the model wine solution, in standard condition (20 °C, no oxygen) as suggested by Vivas et al. (2);

(ii)        the three oenotannins mixtures obtained were added to eight different red and white wines with the aim of modulating their redox potential. Wines were chemically analyzed and the redox potential monitored for three months.

The results here obtained highlighted that commercial oenotannins, when added to the model wine solution, showed a different impact in the redox potential: condensed tannins from grape seed, quebracho and tea showed the ability to raise the redox potential; hydrolysable tannins from gallnuts and tara showed an important increase in redox potential, as well as for some oenotannins derived from oak. In this last case, the ability to modulate the redox potential (increase or decrease) was linked to the wood origin, toasting and drying prior the tannins extraction.

The three oenotannins mixtures added to the red and white wines affected their chemical composition  as well as their redox potential.

A PLS1 model was successfully built using the wine chemical parameters and the redox potential monitored for three months, in order to predict the redox status of wines through the oenotannins addition.

Reference: 1) Vivas, N. (2003) In: Prodotti di trattamento ed ausiliari di elaborazione dei mosti e dei vini. Ed. Eno-one srl.; 2) Vivas, N., Glories, Y., Bertrand, A. and Zamora, F. (1996) Bulletin OIV 69, 617-633.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Valentina, Canuti, Francesco, Maioli, Lorenzo, Cecchi, Monica, Picchi

Presenting author

Valentina, Canuti – Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy

Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy | Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy | Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy, Luigi, Sanarica. Enolife SrL, Montemesola (TA), ,

Contact the author

Keywords

oenotannins, redox potential, PLS model

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Local ancient grapevine cultivars to face future viticulture

Among the different strategies to cope with the negative impacts of climate change on viticulture, the exploitation of genetic diversity is one of the most promising to adapt to new conditions and maintain wine production and quality. One of the biggest concerns in the context of climate change is to improve water use efficiency (WUE). In this way, the use of genotypes that present a better response to drought and high WUE is a key issue. In this work, physiological performance analysis was conducted to compare the water deficit stress (WDS) responses of local and widespread grapevines cultivars. Leaf gas exchange, water use efficiency (WUE) at different levels (leaf and long-term WUE (∆13C)), leaf osmotic adjustment and other water relations parameters were determined in plants under well-watered and WDS conditions alongside assessment of the levels of foliar hormones concentrations. Results denote that local cultivars displayed better physiological performance under WDS as compared to the widely-distributed ones. he results corroborate the hypothesis that better stomatal control allows increasing leaf WUE under drought as occurred in the local Callet cv.; but the minority local cultivar Escursac cv. showed high WUE under both treatments. In this case, high WUE can be related to maintaining higher photosynthetic activity under drought. The different mechanisms underlying the better performance under WDS and high WUE of minority local cultivars are discussed.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.