WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

Abstract

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass. However, the underlying factor behind the fizziness of these wines involves a second in-bottle alcoholic fermentation, also well known as the prise de mousse. In France, from a regulatory point of view, there is no obligation to conduct the prise de mousse at a specific temperature. Only historical references mention the advantages of using cellars dug in the tuffeau of the Loire or in the chalk in the Champagne area, to develop the production of Crémant de Loire and Champagne, and above all to conduct a slow prise de mousse at a low temperature

The aim of this study was to assess whether a low temperature (13°C) or a high temperature (20°C) during the in-bottle fermentation might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble size) of French sparkling wines. Two batches of wines were used: one Crémant de Loire and one Champagne wine. Three months after bottling, a campaign of instrumental and sensory analysis was carried out on these wines.

Our results showed that the champagne wine elaborated at 13°C and served in standard tasting conditions (i.e., engraved flute, 100 mL, 18°C) had better ability to keep the dissolved CO2 in the liquid phase than the one elaborated at 20°C. Most interestingly, we also observed, for the Crémant de Loire and the Champagne wine, that the lower the temperature of the prise de mousse, the smaller the bubbles in the foam collar during the ten minutes following the pouring process.

Finally, sensory analyses were performed by a panel of ten wine experts in order to reveal potential differences according to the temperature of the prise de mousse. Interestingly, a triangle test also showed a significant difference between the Champagne wine elaborated at 13°C and the one elaborated at 20°C.

Further experiments are under investigation to confirm these results on Champagne wine and sparkling wines aged during a longer period. A detailed knowledge of the chemical and biochemical differences between the sparkling wines elaborated at 13°C and 20°C may help to better understand the different behaviors observed in this study.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Clara, Cilindre, Silvia, Bassi, Céline, Henrion, Barbara, Poty, Marie, Angot, Jacques Emmanuel, Barbier, Bertrand, Robillard, Gérard, Liger-Belair

Presenting author

Clara, Cilindre – Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France.

Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France | Institut Œnologique de Champagne (IOC), Mardeuil, France | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France., Jacques Emmanuel, Barbier | Institut Œnologique de Champagne (IOC), Mardeuil, France., Bertrand, Robillard | Institut Œnologique de Champagne (IOC), Mardeuil, France., Gérard, Liger-Belair | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France.

Contact the author

Keywords

Prise de mousse – temperature – CO2 – bubbles – sparkling wine tasting

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF. METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Using a grape compositional model to predict harvest time and influence wine style

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation