WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

Abstract

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass. However, the underlying factor behind the fizziness of these wines involves a second in-bottle alcoholic fermentation, also well known as the prise de mousse. In France, from a regulatory point of view, there is no obligation to conduct the prise de mousse at a specific temperature. Only historical references mention the advantages of using cellars dug in the tuffeau of the Loire or in the chalk in the Champagne area, to develop the production of Crémant de Loire and Champagne, and above all to conduct a slow prise de mousse at a low temperature

The aim of this study was to assess whether a low temperature (13°C) or a high temperature (20°C) during the in-bottle fermentation might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble size) of French sparkling wines. Two batches of wines were used: one Crémant de Loire and one Champagne wine. Three months after bottling, a campaign of instrumental and sensory analysis was carried out on these wines.

Our results showed that the champagne wine elaborated at 13°C and served in standard tasting conditions (i.e., engraved flute, 100 mL, 18°C) had better ability to keep the dissolved CO2 in the liquid phase than the one elaborated at 20°C. Most interestingly, we also observed, for the Crémant de Loire and the Champagne wine, that the lower the temperature of the prise de mousse, the smaller the bubbles in the foam collar during the ten minutes following the pouring process.

Finally, sensory analyses were performed by a panel of ten wine experts in order to reveal potential differences according to the temperature of the prise de mousse. Interestingly, a triangle test also showed a significant difference between the Champagne wine elaborated at 13°C and the one elaborated at 20°C.

Further experiments are under investigation to confirm these results on Champagne wine and sparkling wines aged during a longer period. A detailed knowledge of the chemical and biochemical differences between the sparkling wines elaborated at 13°C and 20°C may help to better understand the different behaviors observed in this study.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Clara, Cilindre, Silvia, Bassi, Céline, Henrion, Barbara, Poty, Marie, Angot, Jacques Emmanuel, Barbier, Bertrand, Robillard, Gérard, Liger-Belair

Presenting author

Clara, Cilindre – Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France.

Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France | Institut Œnologique de Champagne (IOC), Mardeuil, France | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France., Jacques Emmanuel, Barbier | Institut Œnologique de Champagne (IOC), Mardeuil, France., Bertrand, Robillard | Institut Œnologique de Champagne (IOC), Mardeuil, France., Gérard, Liger-Belair | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France.

Contact the author

Keywords

Prise de mousse – temperature – CO2 – bubbles – sparkling wine tasting

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Drought stress shapes the fungal microbiome of grapevine leaves: insights from DNA metabarcoding

Drought stress is an increasingly prevalent environmental challenge with implications for grapevine physiology and productivity, as well as for the microbiomes associated with grapevine tissues.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.