WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

Abstract

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass. However, the underlying factor behind the fizziness of these wines involves a second in-bottle alcoholic fermentation, also well known as the prise de mousse. In France, from a regulatory point of view, there is no obligation to conduct the prise de mousse at a specific temperature. Only historical references mention the advantages of using cellars dug in the tuffeau of the Loire or in the chalk in the Champagne area, to develop the production of Crémant de Loire and Champagne, and above all to conduct a slow prise de mousse at a low temperature

The aim of this study was to assess whether a low temperature (13°C) or a high temperature (20°C) during the in-bottle fermentation might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble size) of French sparkling wines. Two batches of wines were used: one Crémant de Loire and one Champagne wine. Three months after bottling, a campaign of instrumental and sensory analysis was carried out on these wines.

Our results showed that the champagne wine elaborated at 13°C and served in standard tasting conditions (i.e., engraved flute, 100 mL, 18°C) had better ability to keep the dissolved CO2 in the liquid phase than the one elaborated at 20°C. Most interestingly, we also observed, for the Crémant de Loire and the Champagne wine, that the lower the temperature of the prise de mousse, the smaller the bubbles in the foam collar during the ten minutes following the pouring process.

Finally, sensory analyses were performed by a panel of ten wine experts in order to reveal potential differences according to the temperature of the prise de mousse. Interestingly, a triangle test also showed a significant difference between the Champagne wine elaborated at 13°C and the one elaborated at 20°C.

Further experiments are under investigation to confirm these results on Champagne wine and sparkling wines aged during a longer period. A detailed knowledge of the chemical and biochemical differences between the sparkling wines elaborated at 13°C and 20°C may help to better understand the different behaviors observed in this study.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Clara, Cilindre, Silvia, Bassi, Céline, Henrion, Barbara, Poty, Marie, Angot, Jacques Emmanuel, Barbier, Bertrand, Robillard, Gérard, Liger-Belair

Presenting author

Clara, Cilindre – Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France.

Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France | Institut Œnologique de Champagne (IOC), Mardeuil, France | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France., Jacques Emmanuel, Barbier | Institut Œnologique de Champagne (IOC), Mardeuil, France., Bertrand, Robillard | Institut Œnologique de Champagne (IOC), Mardeuil, France., Gérard, Liger-Belair | Equipe Effervescence (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France.

Contact the author

Keywords

Prise de mousse – temperature – CO2 – bubbles – sparkling wine tasting

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

The heritage behind the very old vineyards – The novelty with tradition for the future 

In Portugal, the prospection and conservation of representative samples of intra-varietal variability of grapevine has been carried out for 46 years, and in 2010 an infrastructure was created for the conservation of all these genetic resources – the portuguese association for grapevine diversity (porvid) experimental centre for the conservation of grapevine diversity. the aim is to save the genetic identity of ancient varieties to prevent their imminent loss and to preserve the raw material for current and future selections, thus adding economic value and sustainability to the vine and wine sector.

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine.
Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant.
In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices.
The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.