WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Abstract

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’ aroma and are able to modulate its intensity. 1,2 This project aimed to study γ-nonalactone formation in order to better predict the intensity of the ‘cooked fruit’ character of wines in relation to the grape maturity. Thanks to our previous work, one precursor of γ-nonalactone has already been identified and quantified in must and wine: the 4-oxononanoic acid. 3 This work is devoted to study alternative γ-nonalactone formation pathways, especially from the products of C18 unsaturated fatty acid peroxidation. 4 That why 4-hydroxy-2-nonenal was suggested as a potential γ-nonalactone precursor. For its quantification in must and wine, the SPE-GC-MS analysis was developed, validated and applied to assaying this compound in must and wine from Bordeaux area. Then, the strereoselective biotransformation of 4-hydroxy-2-nonenal into R/S-γ-nonalactone was investigated. Finally, the impact of grape ripening and over-ripening phenomena on 4-hydroxy-2-nonenal content in must was studied.

In conclusion, our results demonstrated the presence of 4-hydroxy-2-nonenal in musts and wines and its biotransformation to γ-nonalactone during alcoholic fermentation of red grape varieties. The role of 4-hydroxy-2-nonenal as a precursor of the odorous γ-nonalactone in wine is revealed for the first time.

References

(1)         Pons, A.; Lavigne, V.; Eric, F.; Darriet, P.; Dubourdieu, D. Identification of Volatile Compounds Responsible for Prune Aroma in Prematurely Aged Red Wines. J. Agric. Food Chem. 2008, 56 (13), 5285–5290.

(2)         Allamy, L.; Darriet, P.; Pons, A. Molecular Interpretation of Dried-Fruit Aromas in Merlot and Cabernet Sauvignon Musts and Young Wines: Impact of over-Ripening. Food Chem. 2018, 266, 245–253.

(3)         Ferron, P. de; Thibon, C.; Shinkaruk, S.; Darriet, P.; Allamy, L.; Pons, A. Aromatic Potential of Bordeaux Grape Cultivars: Identification and Assays on 4-Oxononanoic Acid, a γ-Nonalactone Precursor. J. Agric. Food Chem. 2020, 68 (47), 13344–13352.

(4)         Schneider, C.; Tallman, K. A.; Porter, N. A.; Brash, A. R. Two Distinct Pathways of Formation of 4-Hydroxynonenal. J. Biol. Chem. 2001

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Philippine de Ferron, Cécile Thibon, Svitlana Shinkaruk, Alexandre Pons

Presenting author

Philippine de Ferron – Phd Student -Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA | Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA | Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Contact the author

Keywords

flavor, γ-nonalactone, precursors, maturity, 4-hydroxy-2-nonenal

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.