WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Abstract

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’ aroma and are able to modulate its intensity. 1,2 This project aimed to study γ-nonalactone formation in order to better predict the intensity of the ‘cooked fruit’ character of wines in relation to the grape maturity. Thanks to our previous work, one precursor of γ-nonalactone has already been identified and quantified in must and wine: the 4-oxononanoic acid. 3 This work is devoted to study alternative γ-nonalactone formation pathways, especially from the products of C18 unsaturated fatty acid peroxidation. 4 That why 4-hydroxy-2-nonenal was suggested as a potential γ-nonalactone precursor. For its quantification in must and wine, the SPE-GC-MS analysis was developed, validated and applied to assaying this compound in must and wine from Bordeaux area. Then, the strereoselective biotransformation of 4-hydroxy-2-nonenal into R/S-γ-nonalactone was investigated. Finally, the impact of grape ripening and over-ripening phenomena on 4-hydroxy-2-nonenal content in must was studied.

In conclusion, our results demonstrated the presence of 4-hydroxy-2-nonenal in musts and wines and its biotransformation to γ-nonalactone during alcoholic fermentation of red grape varieties. The role of 4-hydroxy-2-nonenal as a precursor of the odorous γ-nonalactone in wine is revealed for the first time.

References

(1)         Pons, A.; Lavigne, V.; Eric, F.; Darriet, P.; Dubourdieu, D. Identification of Volatile Compounds Responsible for Prune Aroma in Prematurely Aged Red Wines. J. Agric. Food Chem. 2008, 56 (13), 5285–5290.

(2)         Allamy, L.; Darriet, P.; Pons, A. Molecular Interpretation of Dried-Fruit Aromas in Merlot and Cabernet Sauvignon Musts and Young Wines: Impact of over-Ripening. Food Chem. 2018, 266, 245–253.

(3)         Ferron, P. de; Thibon, C.; Shinkaruk, S.; Darriet, P.; Allamy, L.; Pons, A. Aromatic Potential of Bordeaux Grape Cultivars: Identification and Assays on 4-Oxononanoic Acid, a γ-Nonalactone Precursor. J. Agric. Food Chem. 2020, 68 (47), 13344–13352.

(4)         Schneider, C.; Tallman, K. A.; Porter, N. A.; Brash, A. R. Two Distinct Pathways of Formation of 4-Hydroxynonenal. J. Biol. Chem. 2001

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Philippine de Ferron, Cécile Thibon, Svitlana Shinkaruk, Alexandre Pons

Presenting author

Philippine de Ferron – Phd Student -Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA | Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA | Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Contact the author

Keywords

flavor, γ-nonalactone, precursors, maturity, 4-hydroxy-2-nonenal

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Grafting, the most sustainable way to control phylloxera over 150 years

Just over 150 years ago, phylloxera, daktulosphaera vitifoliae, was introduced to europe, and particularly france, from north america via imports of american vitis plants. This aphid, with its complex biology and life cycle, has spread rapidly to most vineyards, causing rapid and lethal decline of v. Vinifera vines due to the primary and secondary damage it causes to the roots. In response to this pest, and given the economic importance of the french wine sector, professional representatives organised into ‘agricultural societies’, scientists and public authorities rallied together to identify the exact causes, seek solutions and try to stem the serious socio-economic crisis that ensued.