WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Abstract

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’ aroma and are able to modulate its intensity. 1,2 This project aimed to study γ-nonalactone formation in order to better predict the intensity of the ‘cooked fruit’ character of wines in relation to the grape maturity. Thanks to our previous work, one precursor of γ-nonalactone has already been identified and quantified in must and wine: the 4-oxononanoic acid. 3 This work is devoted to study alternative γ-nonalactone formation pathways, especially from the products of C18 unsaturated fatty acid peroxidation. 4 That why 4-hydroxy-2-nonenal was suggested as a potential γ-nonalactone precursor. For its quantification in must and wine, the SPE-GC-MS analysis was developed, validated and applied to assaying this compound in must and wine from Bordeaux area. Then, the strereoselective biotransformation of 4-hydroxy-2-nonenal into R/S-γ-nonalactone was investigated. Finally, the impact of grape ripening and over-ripening phenomena on 4-hydroxy-2-nonenal content in must was studied.

In conclusion, our results demonstrated the presence of 4-hydroxy-2-nonenal in musts and wines and its biotransformation to γ-nonalactone during alcoholic fermentation of red grape varieties. The role of 4-hydroxy-2-nonenal as a precursor of the odorous γ-nonalactone in wine is revealed for the first time.

References

(1)         Pons, A.; Lavigne, V.; Eric, F.; Darriet, P.; Dubourdieu, D. Identification of Volatile Compounds Responsible for Prune Aroma in Prematurely Aged Red Wines. J. Agric. Food Chem. 2008, 56 (13), 5285–5290.

(2)         Allamy, L.; Darriet, P.; Pons, A. Molecular Interpretation of Dried-Fruit Aromas in Merlot and Cabernet Sauvignon Musts and Young Wines: Impact of over-Ripening. Food Chem. 2018, 266, 245–253.

(3)         Ferron, P. de; Thibon, C.; Shinkaruk, S.; Darriet, P.; Allamy, L.; Pons, A. Aromatic Potential of Bordeaux Grape Cultivars: Identification and Assays on 4-Oxononanoic Acid, a γ-Nonalactone Precursor. J. Agric. Food Chem. 2020, 68 (47), 13344–13352.

(4)         Schneider, C.; Tallman, K. A.; Porter, N. A.; Brash, A. R. Two Distinct Pathways of Formation of 4-Hydroxynonenal. J. Biol. Chem. 2001

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Philippine de Ferron, Cécile Thibon, Svitlana Shinkaruk, Alexandre Pons

Presenting author

Philippine de Ferron – Phd Student -Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA | Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA | Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Contact the author

Keywords

flavor, γ-nonalactone, precursors, maturity, 4-hydroxy-2-nonenal

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Adaptation et expression de l’encépagement et mode de conduite en différents terroirs de la région du Douro/vin de Porto

Ce travail a pour objet l’analyse des résultats agronomiques obtenus sur trois unités expérimentales du Centre d’Etudes Vitivinicoles du Douro (CEVDouro), localisées dans des écosystèmes différenciés de la Région du Douro/Vin de Porto, à différentes altitudes (130, 330 et 520 mètres) et à des expositions diversifiées (SE, N et W).

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle. In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

Sensory evaluation of the effect of anthocyanins on in-mouth perceptions

In this audio recording of the IVES science meeting 2022, Maria Paissoni (Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy) speaks about sensory evaluation of the effect of anthocyanins on in-mouth perceptions. This presentation is based on an original article accessible for free on OENO One.