WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Abstract

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

The objective of this study is to evaluate the impact of the harvest date and the duration of maceration on phenolic composition and sensorial quality of Divico red wines. During two consecutive vintages, 2019 and 2020, Divico grapes grown on two terroirs in Switzerland, Pully and Leytron, were harvested at commercial maturity (1st maturity) and 2-3 weeks later (2nd maturity). Two wine making processes with 6 days and 13 days maceration duration were applied to the same grapes. Grape and wine phenolic composition analyses were conducted during maturation, during wine making and after bottling. Sensorial analyses were conducted only after bottling.

Divico wines obtained were riche in phenolic compounds. Total polyphenol index with DO280nm were higher than 100. The concentrations of proanthocyanidins in obtained Divico wines varies from 3-5 g/L. 13 days maceration wines presented higher concentration of proanthocyanidins due to extra extraction of seed tannins. The values for anthocyanins were close to 3 g/L. Wines obtained with the 2nd maturity grapes and with 6 days maceration were preferred for higher fruity intensity, less acidity, more velvet tannins and better mouth equilibrium. 13 days maceration wines presented more aggressive tannins and bitterness in mouth. These results indicated that Divico grapes probably didn’t reach the optimum seed phenolic maturity even for the 2nd harvest day. Moreover, aroma management during prolonged maceration should be mastered if this practice is desired.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Liming ZENG, Marie Blackford, Ágnes Dienes-Nagy, Valentin Schwertz, Damien Simone,Jean-Laurent Spring, Gilles Bourdin, Fabrice Lorenzini, Benoit Bach

Presenting author

Liming ZENG – Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse

Changins, Agroscope, Ágnes Dienes-Nagy | Agroscope, 1260 Nyon, Suisse | Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse | Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse | Agroscope, 1260 Nyon, Suisse | Agroscope, 1260 Nyon, Suisse | Agroscope, 1260 Nyon, Suisse| Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse, ,

Contact the author

Keywords

Divico wines-phenolic composition-sensorial quality-harvest date-maceration duration

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

The state of the climate

The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion
materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment,
and overall plant vigor [1].