WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Abstract

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Our work shows the possibility of inducing the adhesion of O. œni and S. cerevisiae, alone or in co-culture, in low nutriment medium, on different materials already used in the winery environment, at the microplate scale, in static conditions. The quantities of attached biomass (CFU counts) are close for all the tested modalities at the end of the adhesion time (48h for S. cerevisiae and 72h for O. œni with one broth renewal). The inoculated supports are transferred after rinsing into tubes containing must or wine, depending on the application, and the progress of the fermentations is analysed. In most conditions, total sugars are below 5 g/l after 5 days of AF, and all malic acid in the substrate (about 4 g/l) is consumed in 10 to 15 days.

This immobilization model could be the first step towards a perfectly controlled industrial fermentation processes.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marianne GOSSET, Patricia TAILLANDIER, , Christine ROQUES, Magali Garcia

Presenting author

Marianne GOSSET – LGC Biosym Toulouse

LGC Biosym Toulouse | LGC Biosym Toulouse | AB7 Industries

Contact the author

Keywords

Immobilization – O. oeni – S. cerevisiae – fermentations – industrial process

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

‘It’s a small, yappy dog’: The British idea of terroir

Aims: Most consumer research about terroir has focused on wine, particularly with French or other European wine drinkers, rather than those in the Anglo-Saxon world. In Europe, whilst there is no agreement amongst consumers as to what terroir actually is, there is a general recognition of the word and an acceptance that it represents something important

Tokaj zonation, traditions and future prospects

La superficie actuelle de l’ensemble des vignobles est de 5.293 ha qui est repartie dans 27 communes (données officielles du Conseil National des Communes de montagnes).

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.