WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Abstract

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Our work shows the possibility of inducing the adhesion of O. œni and S. cerevisiae, alone or in co-culture, in low nutriment medium, on different materials already used in the winery environment, at the microplate scale, in static conditions. The quantities of attached biomass (CFU counts) are close for all the tested modalities at the end of the adhesion time (48h for S. cerevisiae and 72h for O. œni with one broth renewal). The inoculated supports are transferred after rinsing into tubes containing must or wine, depending on the application, and the progress of the fermentations is analysed. In most conditions, total sugars are below 5 g/l after 5 days of AF, and all malic acid in the substrate (about 4 g/l) is consumed in 10 to 15 days.

This immobilization model could be the first step towards a perfectly controlled industrial fermentation processes.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marianne GOSSET, Patricia TAILLANDIER, , Christine ROQUES, Magali Garcia

Presenting author

Marianne GOSSET – LGC Biosym Toulouse

LGC Biosym Toulouse | LGC Biosym Toulouse | AB7 Industries

Contact the author

Keywords

Immobilization – O. oeni – S. cerevisiae – fermentations – industrial process

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Paysages viticoles et terroir dans l’OAC Ribeira Sacra (Galice, NO de l’Espagne)

The concept of Appellation d’Origine Contrôlée (AOC) is based on the existence of a link between the characteristics of the terroir and the quality and typicality of the production (DELAS, 2000). If for a long time, this link only appeared as the fruit of empiricism, the research undertaken recently has made it possible to scientifically establish the complex relationships between the functioning of natural environments and the ability to produce quality.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

The effectiveness of proximal remote sensors in plant water status evaluation of grapevine

Extensive studies have been conducted on grapevine responses to water deficit, but these responses are difficult to generalise since numerous factors can influence the response(s), including genotype, developmental stage, soil, climate, and season.