WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Abstract

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Our work shows the possibility of inducing the adhesion of O. œni and S. cerevisiae, alone or in co-culture, in low nutriment medium, on different materials already used in the winery environment, at the microplate scale, in static conditions. The quantities of attached biomass (CFU counts) are close for all the tested modalities at the end of the adhesion time (48h for S. cerevisiae and 72h for O. œni with one broth renewal). The inoculated supports are transferred after rinsing into tubes containing must or wine, depending on the application, and the progress of the fermentations is analysed. In most conditions, total sugars are below 5 g/l after 5 days of AF, and all malic acid in the substrate (about 4 g/l) is consumed in 10 to 15 days.

This immobilization model could be the first step towards a perfectly controlled industrial fermentation processes.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marianne GOSSET, Patricia TAILLANDIER, , Christine ROQUES, Magali Garcia

Presenting author

Marianne GOSSET – LGC Biosym Toulouse

LGC Biosym Toulouse | LGC Biosym Toulouse | AB7 Industries

Contact the author

Keywords

Immobilization – O. oeni – S. cerevisiae – fermentations – industrial process

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world