WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

Abstract

In this study, stationary and time-resolved fluorescence signatures were statistically and chemometrically analyzed among three typologies of Chardonnay wines with the objectives to evaluate their sensitivity to acidic and polyphenolic changes. For that purpose, a dataset was built using Excitation Emission Matrices of fluorescence (N=103) decomposed by a Parallel Factor Analysis (PARAFAC) and fluorescence decays (N=22), mathematically fitted, using the conventional exponential modeling and the phasor plot representation. Wine PARAFAC component C4 coupled with its phasor plot g and s values enable the description of malolactic fermentation (MLF) occurrence in Chardonnay wines.  The combination of multispectral fluorescence parameters opens a novel routinely implementable methodology to diagnose fermentative processes.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Maxime, Pacheco, Ambroise, Marin, Jean-Marie, Perrier-Cornet, Christian, Coelho

Presenting author

Maxime, Pacheco – UMR PAM

UMR PAM – Dimacell Imaging Facility | UMR PAM – Dimacell Imaging Facility | UMR PAM – Dimacell Imaging Facility | UMR PAM – Vetagro Sup

Contact the author

Keywords

Malolactic fermantation – Traceability – PARAFAC components – Fluorescence lifetime – Phasor plot

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Aim: Irrigated viticulture is expanding worldwide mainly as a short-term adaptation strategy to climate change. Plant-based methods are increasingly being used for irrigation scheduling in commercial vineyards. Canopy temperature (TC) has long been recognized as an indicator of plant water status. TC, but also the thermal stress indices, e.g. crop water stress index (CWSI) and stomatal

Empreinte carbone et environnementale du vin en France : chiffres d’impact et bonnes pratiques à mettre en œuvre

Increasing concentrations of greenhouse gases (GHGs) in the atmosphere due to human activities are leading to a rise in the average temperature of the atmosphere. among the scenarios established by the un’s intergovernmental panel on climate change (IPCC), only two enable us to achieve the minimum objective of the paris agreements signed at cop 21 in 2015: staying below +2°c after 2050. both scenarios forecast a rapid reduction in GHG emissions as early as 2025, thanks to strong international cooperation, the priority given to sustainable development and responsible consumer choices.