WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

Abstract

In this study, stationary and time-resolved fluorescence signatures were statistically and chemometrically analyzed among three typologies of Chardonnay wines with the objectives to evaluate their sensitivity to acidic and polyphenolic changes. For that purpose, a dataset was built using Excitation Emission Matrices of fluorescence (N=103) decomposed by a Parallel Factor Analysis (PARAFAC) and fluorescence decays (N=22), mathematically fitted, using the conventional exponential modeling and the phasor plot representation. Wine PARAFAC component C4 coupled with its phasor plot g and s values enable the description of malolactic fermentation (MLF) occurrence in Chardonnay wines.  The combination of multispectral fluorescence parameters opens a novel routinely implementable methodology to diagnose fermentative processes.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Maxime, Pacheco, Ambroise, Marin, Jean-Marie, Perrier-Cornet, Christian, Coelho

Presenting author

Maxime, Pacheco – UMR PAM

UMR PAM – Dimacell Imaging Facility | UMR PAM – Dimacell Imaging Facility | UMR PAM – Dimacell Imaging Facility | UMR PAM – Vetagro Sup

Contact the author

Keywords

Malolactic fermantation – Traceability – PARAFAC components – Fluorescence lifetime – Phasor plot

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

There are currently enzyme preparations on the market with specific protease activities capable of degrading unstable must proteins and preventing turbidity in white and rosé wines. The main drawback is the need to heat the must at 75ºc for 1-2 minutes to denature the proteins and facilitate enzyme action.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.