WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Abstract

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France). During the alcoholic fermentation of the must when H2S appeared additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. Free volatile compounds were analyzed using GC-MS techniques. Analyses during the alcoholic fermentation process of the Lugana wines indicate that Zymaflore Delta developed higher concentrations of H2S than the other. Instead observing the influence of the different nitrogen nutrients it can be said that the best solution to limit the formation of H2S is to use the mix of organic and inorganic nitrogen. For almost all the biochemical classes of the analysed compounds, a statistically significant difference was shown about the yeast variable. Regarding the differences given by the variable of nitrogen nutrition, however, it is shown that all classes are influenced by it. With regard to Lugana wines fermented with Zymaflore Delta, the addition of the mix of organic and inorganic nitrogen led to higher concentrations of α-terpineol, the use of organic nitrogen favored a higher presence of TDN, and the use of this type of nitrogen added with methionine led to higher concentrations of α-terpineol. On the other hand, wines fermented with Zymaflore X5, the addition of the nitrogen nutrition mix during fermentation resulted in higher concentrations of norisoprenoids, while the addition of organic nitrogen and methionine resulted in higher levels of DMS, linalool, α-terpineol and methyl salicylate. This study showed that the choice of yeast proved to be the variable with the greatest impact on the volatile chemical profile of the wines studied. Furthermore, the choice of nitrogen nutrient had a significant impact on the production of volatile compounds but did not follow a specific trend within the classes of compounds that could be defined as improving or worsening the general aromatic profile of the wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Beatrice, PERINA, Virginie, MOINE, Davide, SLAGHENAUFI, Giovanni, LUZZINI, Maurizio, UGLIANO

Presenting author

Beatrice, PERINA – Department of Biotechnology, University of Verona

Biolaffort, France | Biolaffort, France | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona,

Contact the author

Keywords

Lugana wine, White wine, Nitrogen nutrition, Aroma compound, GC-MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.
Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate.

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.