WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Abstract

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France). During the alcoholic fermentation of the must when H2S appeared additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. Free volatile compounds were analyzed using GC-MS techniques. Analyses during the alcoholic fermentation process of the Lugana wines indicate that Zymaflore Delta developed higher concentrations of H2S than the other. Instead observing the influence of the different nitrogen nutrients it can be said that the best solution to limit the formation of H2S is to use the mix of organic and inorganic nitrogen. For almost all the biochemical classes of the analysed compounds, a statistically significant difference was shown about the yeast variable. Regarding the differences given by the variable of nitrogen nutrition, however, it is shown that all classes are influenced by it. With regard to Lugana wines fermented with Zymaflore Delta, the addition of the mix of organic and inorganic nitrogen led to higher concentrations of α-terpineol, the use of organic nitrogen favored a higher presence of TDN, and the use of this type of nitrogen added with methionine led to higher concentrations of α-terpineol. On the other hand, wines fermented with Zymaflore X5, the addition of the nitrogen nutrition mix during fermentation resulted in higher concentrations of norisoprenoids, while the addition of organic nitrogen and methionine resulted in higher levels of DMS, linalool, α-terpineol and methyl salicylate. This study showed that the choice of yeast proved to be the variable with the greatest impact on the volatile chemical profile of the wines studied. Furthermore, the choice of nitrogen nutrient had a significant impact on the production of volatile compounds but did not follow a specific trend within the classes of compounds that could be defined as improving or worsening the general aromatic profile of the wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Beatrice, PERINA, Virginie, MOINE, Davide, SLAGHENAUFI, Giovanni, LUZZINI, Maurizio, UGLIANO

Presenting author

Beatrice, PERINA – Department of Biotechnology, University of Verona

Biolaffort, France | Biolaffort, France | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona,

Contact the author

Keywords

Lugana wine, White wine, Nitrogen nutrition, Aroma compound, GC-MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Gevrey-Chambertin : les enjeux d’un territoire vitivinicole locale à l’échelle mondiale

An emblematic name of the burgundy wine region, a few kilometers from dijon, gevrey-chambertin stands out as a small wine town of international renown in the heart of a prestigious red wine vineyard listed as a unesco world heritage site.

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.