WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Abstract

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France). During the alcoholic fermentation of the must when H2S appeared additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. Free volatile compounds were analyzed using GC-MS techniques. Analyses during the alcoholic fermentation process of the Lugana wines indicate that Zymaflore Delta developed higher concentrations of H2S than the other. Instead observing the influence of the different nitrogen nutrients it can be said that the best solution to limit the formation of H2S is to use the mix of organic and inorganic nitrogen. For almost all the biochemical classes of the analysed compounds, a statistically significant difference was shown about the yeast variable. Regarding the differences given by the variable of nitrogen nutrition, however, it is shown that all classes are influenced by it. With regard to Lugana wines fermented with Zymaflore Delta, the addition of the mix of organic and inorganic nitrogen led to higher concentrations of α-terpineol, the use of organic nitrogen favored a higher presence of TDN, and the use of this type of nitrogen added with methionine led to higher concentrations of α-terpineol. On the other hand, wines fermented with Zymaflore X5, the addition of the nitrogen nutrition mix during fermentation resulted in higher concentrations of norisoprenoids, while the addition of organic nitrogen and methionine resulted in higher levels of DMS, linalool, α-terpineol and methyl salicylate. This study showed that the choice of yeast proved to be the variable with the greatest impact on the volatile chemical profile of the wines studied. Furthermore, the choice of nitrogen nutrient had a significant impact on the production of volatile compounds but did not follow a specific trend within the classes of compounds that could be defined as improving or worsening the general aromatic profile of the wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Beatrice, PERINA, Virginie, MOINE, Davide, SLAGHENAUFI, Giovanni, LUZZINI, Maurizio, UGLIANO

Presenting author

Beatrice, PERINA – Department of Biotechnology, University of Verona

Biolaffort, France | Biolaffort, France | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona,

Contact the author

Keywords

Lugana wine, White wine, Nitrogen nutrition, Aroma compound, GC-MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Response of different grapevine cultivars to water stress using a hydroscape approach

Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

In recent years red wines are being produced in Andalusia from indigenous and foreign grape varieties, one of which is the Spanish variety Tempranillo.

Caracterización sensorial preliminar de los vinos tintos de la Isla de Tenerife (Islas Canarias, España)

En la isla de Tenerife (Islas Canarias, Espafia) existen cinco Denominaciones de Origen (D.O.) con una superficie inscrita aproximada de 5.000 hectareas. Actualmente existen 94 bodegas

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].