WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Abstract

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines. Traditional malolactic fermentation relies on the inoculum of LAB at the end of the alcoholic fermentation performed by yeasts. The present research aimed to evaluate the effect of five LAB (Lactiplantibacillus plantarum MLP K45H, Oenococcus oeni BETA, O. oeni F2016, O. oeni PN4®, O.oeni VP41® purchased from LallemandOenology) and two Saccharomyces cerevisiae strains (QA23 from Lallemand and NF213 belonging to culture collection of University of Palermo) co-inoculated or added sequentially after alcoholic fermentation. All experimentations were performed with Catarratto and Riesling white grapes.

Even though the results varied with LAB strain and inoculation strategy adopted, the best performances were registered for L. plantarum MLP K45H that

concluded MLF within three and eight days during co- and sequential inoculation in Catarratto wine, respectively. Thus, it can be assumed that O. oeni strains were more susceptible to competition with S. cerevisiae in comparison to L. plantarum. With regards to Riesling wine production, the best results were shown by strain F2016 during co-inoculation since the MLF was ended within 5 days, maintain the

best fermentative rate also in sequential inoculum.

In conclusion, the use of L. plantarum MLP K45H allowed to overcome the competition of other malolactic microorganisms with yeasts and represents an alternative to the use of O.oeni but the inoculum strategy, and the choice of the strain of bacteria must carefully studied considering the wine complexity.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Vincenzo Naselli, Nicola Francesca, Antonio Alfonzo, Paola Vagnoli, Sibylle Krieger, Tomas Roman, Giancarlo Moschetti

Presenting author

Raffaele Guzzon – Fondazione Edmund Mach, Technology Transfer Center

Department of Agricultural, Food and Forest Science, University of Palermo, Food and Forest Science, Lallemand Oenology, Fondazione Edmund Mach, Technology Transfer Center.

Contact the author

Keywords

Malolactic fermentation, simultaneous fermentation, L. plantarum, Catarratto, Riesling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.

Progetto di zonazione delle valli di Cembra e dell’Adige. Analisi del comportamento della varietà Pinot nero in ambiente subalpino

Nel 1990 la Cantina LA VIS ha intrapreso un progetto di zonazione dei terreni vitati allo scopo di acquisire le conoscenze scientifiche atte a consentire il miglioramento delle qualità dei prodotti. Tale progetto si è articolato su di una superficie di 2000 ettari ubicati lungo l’asta fluviale del fiume Adige da Trento a Salorno e del torrente Avisio da Lavis a Segonzano.

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.

Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Among the items preserved in gene banks, the old standard and autochthonous varieties represent an increasing value, since these varieties may have properties to make their cultivation more effective under changing climatic conditions. The increasingly extreme weather is a huge challenge for the viticulture. Collectional varieties can also play important role in protection against pests and pathogens. A genebank ensures not only the preservation of rare varieties, but also gives the opportunity for more knowledge and research of these varieties.

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values.