WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Abstract

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines. Traditional malolactic fermentation relies on the inoculum of LAB at the end of the alcoholic fermentation performed by yeasts. The present research aimed to evaluate the effect of five LAB (Lactiplantibacillus plantarum MLP K45H, Oenococcus oeni BETA, O. oeni F2016, O. oeni PN4®, O.oeni VP41® purchased from LallemandOenology) and two Saccharomyces cerevisiae strains (QA23 from Lallemand and NF213 belonging to culture collection of University of Palermo) co-inoculated or added sequentially after alcoholic fermentation. All experimentations were performed with Catarratto and Riesling white grapes.

Even though the results varied with LAB strain and inoculation strategy adopted, the best performances were registered for L. plantarum MLP K45H that

concluded MLF within three and eight days during co- and sequential inoculation in Catarratto wine, respectively. Thus, it can be assumed that O. oeni strains were more susceptible to competition with S. cerevisiae in comparison to L. plantarum. With regards to Riesling wine production, the best results were shown by strain F2016 during co-inoculation since the MLF was ended within 5 days, maintain the

best fermentative rate also in sequential inoculum.

In conclusion, the use of L. plantarum MLP K45H allowed to overcome the competition of other malolactic microorganisms with yeasts and represents an alternative to the use of O.oeni but the inoculum strategy, and the choice of the strain of bacteria must carefully studied considering the wine complexity.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Vincenzo Naselli, Nicola Francesca, Antonio Alfonzo, Paola Vagnoli, Sibylle Krieger, Tomas Roman, Giancarlo Moschetti

Presenting author

Raffaele Guzzon – Fondazione Edmund Mach, Technology Transfer Center

Department of Agricultural, Food and Forest Science, University of Palermo, Food and Forest Science, Lallemand Oenology, Fondazione Edmund Mach, Technology Transfer Center.

Contact the author

Keywords

Malolactic fermentation, simultaneous fermentation, L. plantarum, Catarratto, Riesling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Cartes thématiques: applications au vignoble champenois

Quel est l’intérêt des cartes en viticulture? Celles-ci répondent à plusieurs usages.
Formalisation au sein d’un référentiel codifié et normalisé de la connaissance relative au milieu, aux observations biologiques et aux pratiques culturales.

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties.