WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Abstract

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines. Traditional malolactic fermentation relies on the inoculum of LAB at the end of the alcoholic fermentation performed by yeasts. The present research aimed to evaluate the effect of five LAB (Lactiplantibacillus plantarum MLP K45H, Oenococcus oeni BETA, O. oeni F2016, O. oeni PN4®, O.oeni VP41® purchased from LallemandOenology) and two Saccharomyces cerevisiae strains (QA23 from Lallemand and NF213 belonging to culture collection of University of Palermo) co-inoculated or added sequentially after alcoholic fermentation. All experimentations were performed with Catarratto and Riesling white grapes.

Even though the results varied with LAB strain and inoculation strategy adopted, the best performances were registered for L. plantarum MLP K45H that

concluded MLF within three and eight days during co- and sequential inoculation in Catarratto wine, respectively. Thus, it can be assumed that O. oeni strains were more susceptible to competition with S. cerevisiae in comparison to L. plantarum. With regards to Riesling wine production, the best results were shown by strain F2016 during co-inoculation since the MLF was ended within 5 days, maintain the

best fermentative rate also in sequential inoculum.

In conclusion, the use of L. plantarum MLP K45H allowed to overcome the competition of other malolactic microorganisms with yeasts and represents an alternative to the use of O.oeni but the inoculum strategy, and the choice of the strain of bacteria must carefully studied considering the wine complexity.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Vincenzo Naselli, Nicola Francesca, Antonio Alfonzo, Paola Vagnoli, Sibylle Krieger, Tomas Roman, Giancarlo Moschetti

Presenting author

Raffaele Guzzon – Fondazione Edmund Mach, Technology Transfer Center

Department of Agricultural, Food and Forest Science, University of Palermo, Food and Forest Science, Lallemand Oenology, Fondazione Edmund Mach, Technology Transfer Center.

Contact the author

Keywords

Malolactic fermentation, simultaneous fermentation, L. plantarum, Catarratto, Riesling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma.

Perceptive interactions and wine typical fruity aroma 

In this study we developed a methodology to prepare aromatic reconstitutions from fractions of a wine organic extract and we assessed these reconstitutions both in wine model solution and in de- aromatized wine.

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.

Evaluation of aroma characteristics in Vitis amurensis grapes across different regions by using HS-SPME-GC/MS

Background: Aroma compounds are important secondary metabolite in grapes and play important roles in the flavor and quality of grape berries and their wines. Vitis amurensis grape belongs to the East Asian Vitis spp., with excellent cold and disease resistance, and exhibits strong brewing potential. However, it has not been effectively utilized and there is no systematic research on the aroma compounds of V. amurensis grapes.
Methods: To provide sufficient experimental evidence for the characteristic aroma of V. amurensis grape, HS-SPME-GC/MS was used to identify the aroma compounds of five V. amurensis (‘Beiguohong’, ‘Beiguolan’, ‘Shuangfeng’, ‘Shuanghong’, ‘Shuangyou’) and three interspecific hybrids (‘Beibinghong’, ‘Xuelanhong’, ‘Zuoyouhong’) grapes in Zuojia and Ji’an. The grape berries were collected at harvest in 2020, 2021 and 2022.

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.