WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Abstract

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines. Traditional malolactic fermentation relies on the inoculum of LAB at the end of the alcoholic fermentation performed by yeasts. The present research aimed to evaluate the effect of five LAB (Lactiplantibacillus plantarum MLP K45H, Oenococcus oeni BETA, O. oeni F2016, O. oeni PN4®, O.oeni VP41® purchased from LallemandOenology) and two Saccharomyces cerevisiae strains (QA23 from Lallemand and NF213 belonging to culture collection of University of Palermo) co-inoculated or added sequentially after alcoholic fermentation. All experimentations were performed with Catarratto and Riesling white grapes.

Even though the results varied with LAB strain and inoculation strategy adopted, the best performances were registered for L. plantarum MLP K45H that

concluded MLF within three and eight days during co- and sequential inoculation in Catarratto wine, respectively. Thus, it can be assumed that O. oeni strains were more susceptible to competition with S. cerevisiae in comparison to L. plantarum. With regards to Riesling wine production, the best results were shown by strain F2016 during co-inoculation since the MLF was ended within 5 days, maintain the

best fermentative rate also in sequential inoculum.

In conclusion, the use of L. plantarum MLP K45H allowed to overcome the competition of other malolactic microorganisms with yeasts and represents an alternative to the use of O.oeni but the inoculum strategy, and the choice of the strain of bacteria must carefully studied considering the wine complexity.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Vincenzo Naselli, Nicola Francesca, Antonio Alfonzo, Paola Vagnoli, Sibylle Krieger, Tomas Roman, Giancarlo Moschetti

Presenting author

Raffaele Guzzon – Fondazione Edmund Mach, Technology Transfer Center

Department of Agricultural, Food and Forest Science, University of Palermo, Food and Forest Science, Lallemand Oenology, Fondazione Edmund Mach, Technology Transfer Center.

Contact the author

Keywords

Malolactic fermentation, simultaneous fermentation, L. plantarum, Catarratto, Riesling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

From vineyard to a glass of wine: the effect of abscisic acid application on mouhtaro, a rare autochthonous variety of greece

In a context of a sustainable viticulture, a new uprising strategy to improve grape and wine composition (or quality) is the exogenous application of plant activators(Gil-Muñoz et al., 2017)

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

A «terroir» is a group of vineyards from the same region, belonging to a specific appellation, and sharing the same type of soil, weather conditions, grapes and wine making savoir-faire, which contribute its specific personality to the wine. White wine variety «Rebula» or «Ribolla gialla» is a local and traditional variety, which is mentioned already in XIII. century like variety for tax paying and merchandise.

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.