WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Interaction Between Armenian Clay-based Ceramic and Model Wine

Interaction Between Armenian Clay-based Ceramic and Model Wine

Abstract

Clay-based ceramic vessels (jars, pyhtoi, etc.) for wine fermentation and aging processes have been used in several cultures for millennia. This know-how still in practice in several countries of the Armenian highland is gaining worldwide in curiosity, popularity, and interest. Ceramic pots are famous among traditional winemakers for their benefits such as temperature regulation, natural cooling system, favorable oxygen exchange, and impact on pH, which are different from those of stainless steel, wood barrels, or concrete.

Despite a 5000-years-old history of the use of clay-ceramic vessels (amongst other in Armenia), there is only few scientific regard on the impact on wine quality. To approach this subject, it is necessary to recourse to many analytical techniques and we only report some results obtained by ICP-AES and proton NMR relaxometry on a model wine.

ICP-AES is used to identify the migration of elements from the ceramic to the model wine. The results of the elemental analysis of the model wine in contact with ceramics over time showed that a large number of elements were transferred from the ceramic to the model wine with different migration behaviors. The noticeable amount of migrating iron attracted attention.

NMR relaxometry is used to follow in situ, the migration of paramagnetic elements (like iron), reduction of iron, but also the consumption of dioxygen in the model wine in contact with the ceramic.

It is also shown that coated ceramic (e.g .with bee wax; a traditional Armenian method) can drastically limit chemical exchange.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Syuzanna Esoyan, Philippe R. Bodart, Camille Loupiac, Thomas Karbowiak, Régis D. Gougeon, Bernhard Michalke, Nelli Hovhannisyan, Philippe Schmitt-Kopplin

Presenting author

Syuzanna Esoyan  – University of Burgundy

Université Bourgogne Franche-Comté, Université Bourgogne Franche-Comté, Thomas Karbowiak, Université Bourgogne Franche-Comté, Université Bourgogne Franche-Comté, Helmholtz Zentrum München, Helmholtz Zentrum München, E. & J. Gallo Winery

Contact the author

Keywords

Ceramic, Model wine, bee wax, ICP-AES, NMR relaxometry

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.

Grape ripening timing as a base for viticultural zoning: an agro-ecological approach

Due to the central role of the ripening timing in the evaluation of the varietal response to the environmental resources, a method to manage maturation curves has been developed. The method produces an index of veraison precocity and overcomes several methodological problems, like the visual evaluation of the veraison point and the multi-annual and multi-varieties data processing. It is based on a statistical and mathematical processing of the sugar ripening curves.

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.

From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

L’aire des A.O.C. Madiran et Pacherenc du Vic-Bilh est située sur le piémont nord-occidental des Pyrénées, au nord du cône de Ger.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.