GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Abstract

Context and purpose of the study – Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017]. Nevertheless, confusion and misdetections still exist, especially with other diseases showing similar leaves discolorations and with mixtures of different materials occurring within one pixel. Mixture effects are also crucial when dealing with satellite images where spatial resolution is much lower (≥10m/pixel). This study aims at improving the detection of vine diseases in UAVs, airborned and satellite images using an innovative tool that identifies the spectral signatures of every elementary materials (e.g. healthy and sick leaves) and their relative contribution at a subpixel level.

Material and methods – We use three distinct datasets acquired in 2016 over the same vineyard located in the Southwest of France (AOC Gaillac): a multispectral image acquired with MicaSense sensor onboard an UAV (5 bands, 10cm/pixel), a Sentinel-2 multispectral image (12 bands, 10m/pixel) and an airborned hyperspectral image (256 bands, 1m/pixel). Ground truth for validation is available through exhaustive centimetric locations of every sick vines for several plots in the studied area. On the methodological perspective, we use an innovative method that performs an unsupervised unmixing jointly with anomalydetection capacities and has a global linear complexity [Nakhostin et al., TGRS, 2016]. Nonlinearities are handled by decomposing the data on an overcomplete set of spectra, combined with a specific sparse projection, which guarantees the interpretability of the analysis.

Results – This paper reports preliminary results obtained with the unmixing algorithm ran over one selected plot available in the dataset. Initial results show the algorithm can detect and separate multiple sources within the plot. Analysis of retrieved endmembers shows a good correlation with the components that can be found in the field, especially with the evidence of healthy and sick leaves’ signatures. Nevertheless, initial mapping still shows some discrepancies with ground truth and further work needs to be done to fine tune the model parameters.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Harold CLENET1,2*, Sina NAKHOSTIN3, Eve LAROCHE-PINEL1,2,4, Sylvie DUTHOIT4

1 Ecole d’Ingénieurs de PURPAN, Toulouse INP, 75 voie du TOEC, 31076 Toulouse, France
2 UMR 1201 DYNAFOR, INRA-Toulouse INP, Chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
3 Ecole et Observatoire des Sciences de la Terre – EOST, 67084 Strasbourg, France
4 TerraNIS, 12 Avenue de l’Europe, 31520 Ramonville Saint-Agne, France

Contact the author

Keywords

vine diseases, remote sensing, image processing, non-linear unmixing, satellite imagery, UAVs

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Red wines can sometimes exhibit undesirable green, herbaceous, and vegetative aromas, negatively impacting their sensory profile and consumer acceptance.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations.

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.