GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Abstract

Context and purpose of the study – Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017]. Nevertheless, confusion and misdetections still exist, especially with other diseases showing similar leaves discolorations and with mixtures of different materials occurring within one pixel. Mixture effects are also crucial when dealing with satellite images where spatial resolution is much lower (≥10m/pixel). This study aims at improving the detection of vine diseases in UAVs, airborned and satellite images using an innovative tool that identifies the spectral signatures of every elementary materials (e.g. healthy and sick leaves) and their relative contribution at a subpixel level.

Material and methods – We use three distinct datasets acquired in 2016 over the same vineyard located in the Southwest of France (AOC Gaillac): a multispectral image acquired with MicaSense sensor onboard an UAV (5 bands, 10cm/pixel), a Sentinel-2 multispectral image (12 bands, 10m/pixel) and an airborned hyperspectral image (256 bands, 1m/pixel). Ground truth for validation is available through exhaustive centimetric locations of every sick vines for several plots in the studied area. On the methodological perspective, we use an innovative method that performs an unsupervised unmixing jointly with anomalydetection capacities and has a global linear complexity [Nakhostin et al., TGRS, 2016]. Nonlinearities are handled by decomposing the data on an overcomplete set of spectra, combined with a specific sparse projection, which guarantees the interpretability of the analysis.

Results – This paper reports preliminary results obtained with the unmixing algorithm ran over one selected plot available in the dataset. Initial results show the algorithm can detect and separate multiple sources within the plot. Analysis of retrieved endmembers shows a good correlation with the components that can be found in the field, especially with the evidence of healthy and sick leaves’ signatures. Nevertheless, initial mapping still shows some discrepancies with ground truth and further work needs to be done to fine tune the model parameters.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Harold CLENET1,2*, Sina NAKHOSTIN3, Eve LAROCHE-PINEL1,2,4, Sylvie DUTHOIT4

1 Ecole d’Ingénieurs de PURPAN, Toulouse INP, 75 voie du TOEC, 31076 Toulouse, France
2 UMR 1201 DYNAFOR, INRA-Toulouse INP, Chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
3 Ecole et Observatoire des Sciences de la Terre – EOST, 67084 Strasbourg, France
4 TerraNIS, 12 Avenue de l’Europe, 31520 Ramonville Saint-Agne, France

Contact the author

Keywords

vine diseases, remote sensing, image processing, non-linear unmixing, satellite imagery, UAVs

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Algae protein: fining agent for white wine, sustainable, non-allergenic and animal-free

The development of non-animal and non-allergenic alternatives to traditional protein fining agents used in winemaking is of critical importance in order to ensure consumer safety and production sustainability. This study evaluates the effect of protein extracted from three types of algae (spirulina, chlorella vulgaris and tetraselmis chuii) as fining agents on the polymeric proanthocyanidin content responsible for astringency, as well as their effect on the colour, phenolic composition and volatile aroma of two white wines (a and b).

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Use of ultrasounds to accelerate aging on lees of red wines

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions.