GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Crop water stress index as a tool to estimate vine water status

Crop water stress index as a tool to estimate vine water status

Abstract

Context and purpose of the study – Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Material and methods – Four vine water status were set up in 2017 on a Cabernet-Sauvignon vineyard grafted onto 110R at Morata de Tajuña (Madrid). Data herein involved correspond to 2018 growing season. Total Irrigation amount was 157, 241, 470 and 626 mm for treatments 1, 2, 3 and 4 respectively in 2018. Plants were 2-bud spur pruned along a unilateral cordon with 11-12 shoots per meter of raw. Training system was a Vertical Shoot Position (VSP). Experimental design was a randomize complete 4-block design with 3 rows per single plot, one central control row and two adjacent ones acting as buffer. Canopy development was measured by determining shaded soil at 10:30. Weather data were collected from a weather station at the same vineyard site. To calculate CWSI, leaf-treatment, wet leaf temperature and dry-leaf temperatures were measured with an infrared camera model FLIR E60. All data were collected around noon at the same time as stem water potential (Ψs), on 5 cloudless days along 2018 – June 19th, July 24th, August 7th, September 4th and 25th-. Four leaves per treatment were sampled each time of measurement. It was established a linear regression between CWSI and stem water potential. One treatment per measuring date (4 pair data) was kept out of the lineal regression and saved them to validate the model; All statistics analysis was performed with the Statistix10 package.

Results – Differences in CWSI arose from the first date of measure, June 19th. Differences in CWSI arise even before than in SWP; Highest SWP was -5.32 and the lowest was -13.80bar. At the end of the season, when overwhelming ambient conditions stayed long time CWSI did not show any difference between treatments despite SWP widely ranged between -6.85 and -10.53 bar between treatments. We found a significant linear relationship between CWSI and SWP (Ψs = 23.58·CWSI -2.87 R2= 0.63***). In an attempt to dig into the variables involved in plant water status we looked into a multiple regression in which SWP was dependent either on CWSI, vapor pressure deficit (VPD), canopy development (SS) and soil water content (Θs). However, none of these variables turned out to be significant but CWSI (R2=0.63**). Shaded soil was significant for P = 0.08. So far we can conclude that CWSI works out when stem water potential is below 14.0 bar.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carlos ESPARTOSA1, Julián RAMOS, Elena GONZÁLEZ-SEARA, Concepción GONZÁLEZ-GARCÍA, Adolfo MOYA, Antonio HUESO, Pilar BAEZA*

1 Centro de Estudios e Investigación para la Gestión de Riesgos Ambientales. ETSI-Agronómica, Alimentaria y Biosistemas. 28040 Madrid, España

Contact the author

Keywords

grapevine, Stem Water Potential, leaf temperature, Vapor Pressure Deficit, canopy development, soil water content, Crop Water Stress Index, infrared camera data

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Sélection génétique des variétés originelles d’Arménie, berceau de la viticulture mondiale

Armenia, a small country in the South of the Caucasus, has been rediscovering its wine-growing past since the discovery in 2007 of archaeological wine-growing remains dating back around 8,000 years. They are among the oldest in the world. Despite a great diversity of grape varieties, Armenian winegrowers did not have sufficiently organized genetic collections to produce plants and satisfy the growing demand for planting.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

ePROSECCO: Historical, cultural, applied philosophy analysis and process, product and certification innovation, for the “sustainable original progress and promotion 4.1c” of a historic and famous territory and wine

According to the algorithm “A step back towards the future 4.1C”, (Cargnello,1986a, 1987d, 1988a.b, 1991, 1993, 1994b, 1995, 1999a.e, 2000b, 2007c, 2008a, 2009d, 2013; and according to the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, 2003 2015, 2017), the historical, applied philosophy and productive analysis connected to the innovations and to the “Certification of the Universal Holistic MetaEthical Sustainability 4.1C” “indexed new global production model 4.1C” has always been fundamental, especially for the “Prosecco Territory” and for the “Prosecco Wine” to design and implement their synergistic future “Sustainable and Certificable 4.1CC” according to the principles of the “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” by the GiESCO (Carbonneau and Cargnello, lc, Cargnello et Carbonneau, 2007, 2018), and of the Conegliano Campus 5.1C. (Cargnello, lc). Nowadays, people think that Prosecco is a wine from the Veneto Region (from Conegliano and Valdobbiadene in particular), while it comes from Friuli‐Venezia Giulia Region (in North Eastern Italy, such as Veneto) more precisely from “Prosecco” in the Municipality of Trieste (TS‐Italy), as documented in 1382 and in 1548, when Pier Andrea Mattioli, described “that ancient wine, which is born in Prosecco”, as a wine with the following characteristics “thin, clear, shiny, golden, odorous and pleasant to taste». In 1888 at the “Wine Fair” of Trieste there were the “Sparkling wine Prosecco” by Giovanni Balanc, by Giuseppe Klampferer and that one by Marino Luxa. In the 19th century, many expressed their appreciation for the “Prosecco” of Trieste. In order to implement intra and extra territorial and cross‐border relations, as well as, the “Certification of: Products, Companies, Territory, Bio‐MétaÉthique District 4.1C” of Prosecco, a series of activities and researches were conducted in 8 companies: 5 in the “Territory of Prosecco” (TS) in which the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, lc) have been successfully applied. In particolar: 1‐ new and original “Sustainable 4.1C global production model” developed also to prevent the problems caused by wild boar, roe deer, and birds while safeguarding their “psychophysical wellness”, as well as the “psychophysical wellness 4.1C” of the macro and micro flora and fauna, of the biodiversity, of the landscape, etc. (Cargnello, lc), 1.2‐ chemical weed control and “Non MetaEthics 4.1C” processing with the total grass growing of the ground without or with mowing, better if it is manual to protect grass, air and soil, 2‐ recovery of “Historic”: land, vineyards, vines, biodiversity, landscapes, productions, products, … , 3‐ production of the famous “Prosekar, also rosé, of Prosecco” and “Prosecco di Prosecco”, according to “A step back towards the future 4.1C” 4‐ to offer a deserved psychophysical well‐being to the “Prosecco Territory” and entrepreneurs.