GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Crop water stress index as a tool to estimate vine water status

Crop water stress index as a tool to estimate vine water status

Abstract

Context and purpose of the study – Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Material and methods – Four vine water status were set up in 2017 on a Cabernet-Sauvignon vineyard grafted onto 110R at Morata de Tajuña (Madrid). Data herein involved correspond to 2018 growing season. Total Irrigation amount was 157, 241, 470 and 626 mm for treatments 1, 2, 3 and 4 respectively in 2018. Plants were 2-bud spur pruned along a unilateral cordon with 11-12 shoots per meter of raw. Training system was a Vertical Shoot Position (VSP). Experimental design was a randomize complete 4-block design with 3 rows per single plot, one central control row and two adjacent ones acting as buffer. Canopy development was measured by determining shaded soil at 10:30. Weather data were collected from a weather station at the same vineyard site. To calculate CWSI, leaf-treatment, wet leaf temperature and dry-leaf temperatures were measured with an infrared camera model FLIR E60. All data were collected around noon at the same time as stem water potential (Ψs), on 5 cloudless days along 2018 – June 19th, July 24th, August 7th, September 4th and 25th-. Four leaves per treatment were sampled each time of measurement. It was established a linear regression between CWSI and stem water potential. One treatment per measuring date (4 pair data) was kept out of the lineal regression and saved them to validate the model; All statistics analysis was performed with the Statistix10 package.

Results – Differences in CWSI arose from the first date of measure, June 19th. Differences in CWSI arise even before than in SWP; Highest SWP was -5.32 and the lowest was -13.80bar. At the end of the season, when overwhelming ambient conditions stayed long time CWSI did not show any difference between treatments despite SWP widely ranged between -6.85 and -10.53 bar between treatments. We found a significant linear relationship between CWSI and SWP (Ψs = 23.58·CWSI -2.87 R2= 0.63***). In an attempt to dig into the variables involved in plant water status we looked into a multiple regression in which SWP was dependent either on CWSI, vapor pressure deficit (VPD), canopy development (SS) and soil water content (Θs). However, none of these variables turned out to be significant but CWSI (R2=0.63**). Shaded soil was significant for P = 0.08. So far we can conclude that CWSI works out when stem water potential is below 14.0 bar.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carlos ESPARTOSA1, Julián RAMOS, Elena GONZÁLEZ-SEARA, Concepción GONZÁLEZ-GARCÍA, Adolfo MOYA, Antonio HUESO, Pilar BAEZA*

1 Centro de Estudios e Investigación para la Gestión de Riesgos Ambientales. ETSI-Agronómica, Alimentaria y Biosistemas. 28040 Madrid, España

Contact the author

Keywords

grapevine, Stem Water Potential, leaf temperature, Vapor Pressure Deficit, canopy development, soil water content, Crop Water Stress Index, infrared camera data

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.