GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Crop water stress index as a tool to estimate vine water status

Crop water stress index as a tool to estimate vine water status

Abstract

Context and purpose of the study – Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Material and methods – Four vine water status were set up in 2017 on a Cabernet-Sauvignon vineyard grafted onto 110R at Morata de Tajuña (Madrid). Data herein involved correspond to 2018 growing season. Total Irrigation amount was 157, 241, 470 and 626 mm for treatments 1, 2, 3 and 4 respectively in 2018. Plants were 2-bud spur pruned along a unilateral cordon with 11-12 shoots per meter of raw. Training system was a Vertical Shoot Position (VSP). Experimental design was a randomize complete 4-block design with 3 rows per single plot, one central control row and two adjacent ones acting as buffer. Canopy development was measured by determining shaded soil at 10:30. Weather data were collected from a weather station at the same vineyard site. To calculate CWSI, leaf-treatment, wet leaf temperature and dry-leaf temperatures were measured with an infrared camera model FLIR E60. All data were collected around noon at the same time as stem water potential (Ψs), on 5 cloudless days along 2018 – June 19th, July 24th, August 7th, September 4th and 25th-. Four leaves per treatment were sampled each time of measurement. It was established a linear regression between CWSI and stem water potential. One treatment per measuring date (4 pair data) was kept out of the lineal regression and saved them to validate the model; All statistics analysis was performed with the Statistix10 package.

Results – Differences in CWSI arose from the first date of measure, June 19th. Differences in CWSI arise even before than in SWP; Highest SWP was -5.32 and the lowest was -13.80bar. At the end of the season, when overwhelming ambient conditions stayed long time CWSI did not show any difference between treatments despite SWP widely ranged between -6.85 and -10.53 bar between treatments. We found a significant linear relationship between CWSI and SWP (Ψs = 23.58·CWSI -2.87 R2= 0.63***). In an attempt to dig into the variables involved in plant water status we looked into a multiple regression in which SWP was dependent either on CWSI, vapor pressure deficit (VPD), canopy development (SS) and soil water content (Θs). However, none of these variables turned out to be significant but CWSI (R2=0.63**). Shaded soil was significant for P = 0.08. So far we can conclude that CWSI works out when stem water potential is below 14.0 bar.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carlos ESPARTOSA1, Julián RAMOS, Elena GONZÁLEZ-SEARA, Concepción GONZÁLEZ-GARCÍA, Adolfo MOYA, Antonio HUESO, Pilar BAEZA*

1 Centro de Estudios e Investigación para la Gestión de Riesgos Ambientales. ETSI-Agronómica, Alimentaria y Biosistemas. 28040 Madrid, España

Contact the author

Keywords

grapevine, Stem Water Potential, leaf temperature, Vapor Pressure Deficit, canopy development, soil water content, Crop Water Stress Index, infrared camera data

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

The effects of perennial cover crop management on soil temperature and vine water status

The implications of perennial cover crop management on vine vigor and yield have been well documented. However, whereas multiple studies show that cover crop management affects grapevine dry matter production, water, and nutrient status, the specific effects of a new hybrid perennial cover crop on soil temperature and its relationship to vine water status in vineyards has not been explored. This study will compare 3 different perennial cover crop combinations and tillage practices with a no-till seeding of a new hybrid perennial, Poa bulbosa (Pb).

Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines. METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.