GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Crop water stress index as a tool to estimate vine water status

Crop water stress index as a tool to estimate vine water status

Abstract

Context and purpose of the study – Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Material and methods – Four vine water status were set up in 2017 on a Cabernet-Sauvignon vineyard grafted onto 110R at Morata de Tajuña (Madrid). Data herein involved correspond to 2018 growing season. Total Irrigation amount was 157, 241, 470 and 626 mm for treatments 1, 2, 3 and 4 respectively in 2018. Plants were 2-bud spur pruned along a unilateral cordon with 11-12 shoots per meter of raw. Training system was a Vertical Shoot Position (VSP). Experimental design was a randomize complete 4-block design with 3 rows per single plot, one central control row and two adjacent ones acting as buffer. Canopy development was measured by determining shaded soil at 10:30. Weather data were collected from a weather station at the same vineyard site. To calculate CWSI, leaf-treatment, wet leaf temperature and dry-leaf temperatures were measured with an infrared camera model FLIR E60. All data were collected around noon at the same time as stem water potential (Ψs), on 5 cloudless days along 2018 – June 19th, July 24th, August 7th, September 4th and 25th-. Four leaves per treatment were sampled each time of measurement. It was established a linear regression between CWSI and stem water potential. One treatment per measuring date (4 pair data) was kept out of the lineal regression and saved them to validate the model; All statistics analysis was performed with the Statistix10 package.

Results – Differences in CWSI arose from the first date of measure, June 19th. Differences in CWSI arise even before than in SWP; Highest SWP was -5.32 and the lowest was -13.80bar. At the end of the season, when overwhelming ambient conditions stayed long time CWSI did not show any difference between treatments despite SWP widely ranged between -6.85 and -10.53 bar between treatments. We found a significant linear relationship between CWSI and SWP (Ψs = 23.58·CWSI -2.87 R2= 0.63***). In an attempt to dig into the variables involved in plant water status we looked into a multiple regression in which SWP was dependent either on CWSI, vapor pressure deficit (VPD), canopy development (SS) and soil water content (Θs). However, none of these variables turned out to be significant but CWSI (R2=0.63**). Shaded soil was significant for P = 0.08. So far we can conclude that CWSI works out when stem water potential is below 14.0 bar.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carlos ESPARTOSA1, Julián RAMOS, Elena GONZÁLEZ-SEARA, Concepción GONZÁLEZ-GARCÍA, Adolfo MOYA, Antonio HUESO, Pilar BAEZA*

1 Centro de Estudios e Investigación para la Gestión de Riesgos Ambientales. ETSI-Agronómica, Alimentaria y Biosistemas. 28040 Madrid, España

Contact the author

Keywords

grapevine, Stem Water Potential, leaf temperature, Vapor Pressure Deficit, canopy development, soil water content, Crop Water Stress Index, infrared camera data

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Aims: This work summarizes some of the upmost recent studies and valorization strategies concerning the Prosecco wine production area. After the geographical denomination Prosecco (DO) was strongly reformed in 2009, the newborn DOCG (controlled and guaranteed DO) and DOC (controlled DO) areas have required different and specific strategies to promote and protect the value of their production.

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

In order for a spatialized gestion of wine-producing areas, delineation of viticultural zones is needed. Viticultural zoning according to qualitative expression of varieties is a great concern