GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Crop water stress index as a tool to estimate vine water status

Crop water stress index as a tool to estimate vine water status

Abstract

Context and purpose of the study – Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Material and methods – Four vine water status were set up in 2017 on a Cabernet-Sauvignon vineyard grafted onto 110R at Morata de Tajuña (Madrid). Data herein involved correspond to 2018 growing season. Total Irrigation amount was 157, 241, 470 and 626 mm for treatments 1, 2, 3 and 4 respectively in 2018. Plants were 2-bud spur pruned along a unilateral cordon with 11-12 shoots per meter of raw. Training system was a Vertical Shoot Position (VSP). Experimental design was a randomize complete 4-block design with 3 rows per single plot, one central control row and two adjacent ones acting as buffer. Canopy development was measured by determining shaded soil at 10:30. Weather data were collected from a weather station at the same vineyard site. To calculate CWSI, leaf-treatment, wet leaf temperature and dry-leaf temperatures were measured with an infrared camera model FLIR E60. All data were collected around noon at the same time as stem water potential (Ψs), on 5 cloudless days along 2018 – June 19th, July 24th, August 7th, September 4th and 25th-. Four leaves per treatment were sampled each time of measurement. It was established a linear regression between CWSI and stem water potential. One treatment per measuring date (4 pair data) was kept out of the lineal regression and saved them to validate the model; All statistics analysis was performed with the Statistix10 package.

Results – Differences in CWSI arose from the first date of measure, June 19th. Differences in CWSI arise even before than in SWP; Highest SWP was -5.32 and the lowest was -13.80bar. At the end of the season, when overwhelming ambient conditions stayed long time CWSI did not show any difference between treatments despite SWP widely ranged between -6.85 and -10.53 bar between treatments. We found a significant linear relationship between CWSI and SWP (Ψs = 23.58·CWSI -2.87 R2= 0.63***). In an attempt to dig into the variables involved in plant water status we looked into a multiple regression in which SWP was dependent either on CWSI, vapor pressure deficit (VPD), canopy development (SS) and soil water content (Θs). However, none of these variables turned out to be significant but CWSI (R2=0.63**). Shaded soil was significant for P = 0.08. So far we can conclude that CWSI works out when stem water potential is below 14.0 bar.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carlos ESPARTOSA1, Julián RAMOS, Elena GONZÁLEZ-SEARA, Concepción GONZÁLEZ-GARCÍA, Adolfo MOYA, Antonio HUESO, Pilar BAEZA*

1 Centro de Estudios e Investigación para la Gestión de Riesgos Ambientales. ETSI-Agronómica, Alimentaria y Biosistemas. 28040 Madrid, España

Contact the author

Keywords

grapevine, Stem Water Potential, leaf temperature, Vapor Pressure Deficit, canopy development, soil water content, Crop Water Stress Index, infrared camera data

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.