GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Crop water stress index as a tool to estimate vine water status

Crop water stress index as a tool to estimate vine water status

Abstract

Context and purpose of the study – Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Material and methods – Four vine water status were set up in 2017 on a Cabernet-Sauvignon vineyard grafted onto 110R at Morata de Tajuña (Madrid). Data herein involved correspond to 2018 growing season. Total Irrigation amount was 157, 241, 470 and 626 mm for treatments 1, 2, 3 and 4 respectively in 2018. Plants were 2-bud spur pruned along a unilateral cordon with 11-12 shoots per meter of raw. Training system was a Vertical Shoot Position (VSP). Experimental design was a randomize complete 4-block design with 3 rows per single plot, one central control row and two adjacent ones acting as buffer. Canopy development was measured by determining shaded soil at 10:30. Weather data were collected from a weather station at the same vineyard site. To calculate CWSI, leaf-treatment, wet leaf temperature and dry-leaf temperatures were measured with an infrared camera model FLIR E60. All data were collected around noon at the same time as stem water potential (Ψs), on 5 cloudless days along 2018 – June 19th, July 24th, August 7th, September 4th and 25th-. Four leaves per treatment were sampled each time of measurement. It was established a linear regression between CWSI and stem water potential. One treatment per measuring date (4 pair data) was kept out of the lineal regression and saved them to validate the model; All statistics analysis was performed with the Statistix10 package.

Results – Differences in CWSI arose from the first date of measure, June 19th. Differences in CWSI arise even before than in SWP; Highest SWP was -5.32 and the lowest was -13.80bar. At the end of the season, when overwhelming ambient conditions stayed long time CWSI did not show any difference between treatments despite SWP widely ranged between -6.85 and -10.53 bar between treatments. We found a significant linear relationship between CWSI and SWP (Ψs = 23.58·CWSI -2.87 R2= 0.63***). In an attempt to dig into the variables involved in plant water status we looked into a multiple regression in which SWP was dependent either on CWSI, vapor pressure deficit (VPD), canopy development (SS) and soil water content (Θs). However, none of these variables turned out to be significant but CWSI (R2=0.63**). Shaded soil was significant for P = 0.08. So far we can conclude that CWSI works out when stem water potential is below 14.0 bar.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carlos ESPARTOSA1, Julián RAMOS, Elena GONZÁLEZ-SEARA, Concepción GONZÁLEZ-GARCÍA, Adolfo MOYA, Antonio HUESO, Pilar BAEZA*

1 Centro de Estudios e Investigación para la Gestión de Riesgos Ambientales. ETSI-Agronómica, Alimentaria y Biosistemas. 28040 Madrid, España

Contact the author

Keywords

grapevine, Stem Water Potential, leaf temperature, Vapor Pressure Deficit, canopy development, soil water content, Crop Water Stress Index, infrared camera data

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring

Use of fumaric acid to control pH and inhibit malolactic fermentation in wines

In this audio recording of the IVES science meeting 2022, Antonio Morata (Universidad Politécnica de Madrid, Madrid, Spain) speaks about the use of fumaric acid to control pH and inhibit malolactic fermentation in wines.

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.

How can yeast modulate Divona’s aromatic profile?

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).