GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 What practices in the vineyard lead to the production of wines that consistently win medals?

What practices in the vineyard lead to the production of wines that consistently win medals?

Abstract

Context and purpose of the study – High quality wines start in the vineyard however little is known about the role vineyard management practices play in this quality outcome. Gold medals and well-known regionality increase consumer preference for purchasing a wine. An increase in the former will certainly also drive an increase in the latter and therefore practices in production that consistently lead to gold medal winning wines will improve both the marketability of the region and its products. It is argued that vinification is the main driver of wine quality and in fact, the presence of some oak compounds is a well-known consumer and expert mark of quality. However, only select wines are vinified in oak and therefore the original grape quality at the winery door must in fact drive all further downstream vinification decisions. Grape composition is also an important driver of flavour and aroma in a final wine. Management practices are able to alter berry chemistry as well as the concentration of enzymes and compounds that act as precursor to many esters affecting wine volatile compounds. This study aims to identify vineyard practices associated with the consistent production of high-quality wine-styles as defined by consistently earning medals at the Barossa Wine Show.

Materials and methods – Twenty years of results from the Riesling and Shiraz categories from the Barossa wine show were analysed for consistent award winning wines. Consistent was defined as a wine that was awarded a medal for at least three successive vintages one of each was a Gold medal. Growers were then asked to respond to a survey to gather information on their viticulture practices including pruning, trellising, nutrition, soil health, pest and disease management, mid-row and under-vine management, irrigation, canopy management and harvest management. This data will be analysed for commonalities.

Results – Shiraz and Riesling wines that have consistently earned medals over a period of 20 years at the Barossa Wine Show have been identified. Growers are being surveyed and their specific vineyard management practices recorded. The analysis of these responses will be presented and aims to identify commonalities in vineyard management. A matrix, linking vineyard practices and wine medals will be created and deployed to the wine industry. Growers in the Barossa Valley will then be able to make more informed management decisions to produce grapes that leads to consistent quality wines. Findings from this study will also create opportunities to validate the matrix in other regions.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Alice L BETTERIDGE1*, Susan E P BASTIAN1,2, Cassandra COLLINS1,2

1 School of Agriculture Food and Wine, University of Adelaide, PMB1 Glen Osmond, SA, Australia, 5064 2Australian Research Council Training Centre for Innovative Wine Production

Contact the author

Keywords

viticultural practices, medal winning wines.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.