GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 What practices in the vineyard lead to the production of wines that consistently win medals?

What practices in the vineyard lead to the production of wines that consistently win medals?

Abstract

Context and purpose of the study – High quality wines start in the vineyard however little is known about the role vineyard management practices play in this quality outcome. Gold medals and well-known regionality increase consumer preference for purchasing a wine. An increase in the former will certainly also drive an increase in the latter and therefore practices in production that consistently lead to gold medal winning wines will improve both the marketability of the region and its products. It is argued that vinification is the main driver of wine quality and in fact, the presence of some oak compounds is a well-known consumer and expert mark of quality. However, only select wines are vinified in oak and therefore the original grape quality at the winery door must in fact drive all further downstream vinification decisions. Grape composition is also an important driver of flavour and aroma in a final wine. Management practices are able to alter berry chemistry as well as the concentration of enzymes and compounds that act as precursor to many esters affecting wine volatile compounds. This study aims to identify vineyard practices associated with the consistent production of high-quality wine-styles as defined by consistently earning medals at the Barossa Wine Show.

Materials and methods – Twenty years of results from the Riesling and Shiraz categories from the Barossa wine show were analysed for consistent award winning wines. Consistent was defined as a wine that was awarded a medal for at least three successive vintages one of each was a Gold medal. Growers were then asked to respond to a survey to gather information on their viticulture practices including pruning, trellising, nutrition, soil health, pest and disease management, mid-row and under-vine management, irrigation, canopy management and harvest management. This data will be analysed for commonalities.

Results – Shiraz and Riesling wines that have consistently earned medals over a period of 20 years at the Barossa Wine Show have been identified. Growers are being surveyed and their specific vineyard management practices recorded. The analysis of these responses will be presented and aims to identify commonalities in vineyard management. A matrix, linking vineyard practices and wine medals will be created and deployed to the wine industry. Growers in the Barossa Valley will then be able to make more informed management decisions to produce grapes that leads to consistent quality wines. Findings from this study will also create opportunities to validate the matrix in other regions.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Alice L BETTERIDGE1*, Susan E P BASTIAN1,2, Cassandra COLLINS1,2

1 School of Agriculture Food and Wine, University of Adelaide, PMB1 Glen Osmond, SA, Australia, 5064 2Australian Research Council Training Centre for Innovative Wine Production

Contact the author

Keywords

viticultural practices, medal winning wines.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Les travaux menés, dans le cadre du programme départemental pour la connaissance et la valorisation des terroirs viticoles, sur l’aire A.O.C. Coteaux du Languedoc / Pic Saint-Loup ont permis d’appliquer à l’échelle d’une Appellation d’Origine Contrôlée (13 communes), une méthodologie d’étude axée sur les aspects sol/climat/topographie qui concourent à l’identification des terroirs naturels, facteurs de typicité des vins.

Genome editing applications on grapevine cv. Aglianico for the knockout of susceptibility genes related to fungal diseases

Context and purpose of the study. Italy hosts diverse grapevine varieties crucial for viticultural biodiversity. Preserving this biodiversity is essential for maintaining a diversified genetic pool and addressing future challenges such as climate change and emerging plant diseases.

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

Influenza delle componenti climatiche e pedologiche sulla variabilità dei contenuti polifenolici in alcuni ambienti vitati della DOCG Sagrantino di Montefalco

Obiettivo del progetto è la valutazione dell’influenza climatica e pedologica dell’areale di Montefalco sul vitigno Sagrantino, ponendo particolare attenzione alla componente polifenolica e antocianica. Sono stati quindi messi a confronto, a partire dal 2001 fino al 2008, sei differenti zone tutte situate all’interno dell’areale DOCG Sagrantino di Montefalco; per ciascun vigneto alla vendemmia sono state effettuate analisi sui parametri analitici e sul contenuto polifenolico e antocianico delle uve. Ognuna delle sei zone è inoltre stata caratterizzata dal punto di vista pedoclimatico, valutando l’influenza del clima e della tipologia di suolo sui parametri analitici presi in considerazione.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.