OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

Abstract

The chemical behavior of anthocyanins is considerably affected even by slight pH variations with impor-tant implications for the winemaking as well as for the wine conservation. Considering that this is a cen-tral issue to the enological sector, we decided to better investigate the influence of pH on the anthocyanin chemistry.

Initially, by chromatographic and advanced NMR techniques the chemical behavior of malvi-din- 3-O-glucoside was studied in wine-like solutions with pH values ranging from 3 to 4. First, the already composite aqueous equilibrium of malvidin-3-O-glucoside turned out to be even more complex than so far thought, as a new hydration product of the anthocyanin was detected and characterized in solution.

More importantly on account of its technological implications, the anthocyanin solubility appeared to decrease remarkably as the pH value of the wine-like solutions increased. A dramatic drop in terms of anthocyanin solubility was observed at pH 3.32, where the measured molecule concentration was reduced to almost 25% the expected one. Also, at such pH level the anthocyanin self-association appeared significantly affected.

In more detail,the flavylium ion self-association predominant at lower pH levels was altered and found to co-occur with a preferential co-pigmentation involving flavylium ion species and the trans-chalcone form of malvidin-3-O-glucoside. At higher pH values, this latter association was the only one detected in so-lution. In the light of these results, we set up an experimental protocol with the purpose of analyzing the pH influence on the anthocyanin chemistry and extractability in real wines produced by varying their pH levels during the maceration-fermentation phases.

Preliminary chemical analysis of such wines provided data consistent with those obtained in wine-like solutions. Indeed, the extraction of malvidin-3-O-gluco-side and that of anthocyanins in general was more contained as the pH value increased.

Additionally, other molecules of enological interest, including catechins, cinnamates, syringic acid and terpenoids, turned out to be affected by the wine pH. These analytical data highlight the fundamental role of pH during the wine-making and the importance of regulating its level to obtain wines with the desired polyphenolic structure.

Boulton. American journal of enology and viticulture, 52(2), 67-87 (2001). Forino, M., Gambuti, A., Luciano, P., Moio, L. J. Agric. Food Chem. (2019) doi:10.1021/acs.jafc.8b05895 

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Martino Forino, Angelita Gambuti, Luigi Picariello, Luigi Moio

Department of Agricultural Sciences, University of Napoli “Federico II”−Oenology Sciences Section Viale Italia, 83100 Avellino, Italy

Contact the author

Keywords

Anthocyanin , pH, pigmentation, anthocyanin solubility

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Insights into the stable isotope ratio variability of hybrid grape varieties

The wine industry faces the consumer’s increasing demand for a sustainable and environmentally-friendly production [1]. This demand has been shared and boosted by the European Union within the European Green Deal in the Farm to Fork strategy that aims to reduce a 50% the pesticide utilisation in farming systems. Among the agronomical approaches so far proposed, the use of mould resitant hybrid varieties -based on crossings of Vitis vinifera with other Vitis spp [2]- with a high tolerance to the attack of vine patogens is gaining the vinegrowers attention and the production area is continuously increasing

Sensory evaluation of the effect of anthocyanins on in-mouth perceptions

In this audio recording of the IVES science meeting 2022, Maria Paissoni (Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy) speaks about sensory evaluation of the effect of anthocyanins on in-mouth perceptions. This presentation is based on an original article accessible for free on OENO One.