OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

Abstract

The chemical behavior of anthocyanins is considerably affected even by slight pH variations with impor-tant implications for the winemaking as well as for the wine conservation. Considering that this is a cen-tral issue to the enological sector, we decided to better investigate the influence of pH on the anthocyanin chemistry.

Initially, by chromatographic and advanced NMR techniques the chemical behavior of malvi-din- 3-O-glucoside was studied in wine-like solutions with pH values ranging from 3 to 4. First, the already composite aqueous equilibrium of malvidin-3-O-glucoside turned out to be even more complex than so far thought, as a new hydration product of the anthocyanin was detected and characterized in solution.

More importantly on account of its technological implications, the anthocyanin solubility appeared to decrease remarkably as the pH value of the wine-like solutions increased. A dramatic drop in terms of anthocyanin solubility was observed at pH 3.32, where the measured molecule concentration was reduced to almost 25% the expected one. Also, at such pH level the anthocyanin self-association appeared significantly affected.

In more detail,the flavylium ion self-association predominant at lower pH levels was altered and found to co-occur with a preferential co-pigmentation involving flavylium ion species and the trans-chalcone form of malvidin-3-O-glucoside. At higher pH values, this latter association was the only one detected in so-lution. In the light of these results, we set up an experimental protocol with the purpose of analyzing the pH influence on the anthocyanin chemistry and extractability in real wines produced by varying their pH levels during the maceration-fermentation phases.

Preliminary chemical analysis of such wines provided data consistent with those obtained in wine-like solutions. Indeed, the extraction of malvidin-3-O-gluco-side and that of anthocyanins in general was more contained as the pH value increased.

Additionally, other molecules of enological interest, including catechins, cinnamates, syringic acid and terpenoids, turned out to be affected by the wine pH. These analytical data highlight the fundamental role of pH during the wine-making and the importance of regulating its level to obtain wines with the desired polyphenolic structure.

Boulton. American journal of enology and viticulture, 52(2), 67-87 (2001). Forino, M., Gambuti, A., Luciano, P., Moio, L. J. Agric. Food Chem. (2019) doi:10.1021/acs.jafc.8b05895 

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Martino Forino, Angelita Gambuti, Luigi Picariello, Luigi Moio

Department of Agricultural Sciences, University of Napoli “Federico II”−Oenology Sciences Section Viale Italia, 83100 Avellino, Italy

Contact the author

Keywords

Anthocyanin , pH, pigmentation, anthocyanin solubility

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Cette étude a pour but d’évaluer la modification de l’état hydrique (potentiel hydrique foliaire), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales, comme conséquence de l’application d’une irrigation modérée. Pour développer l’essai on a appliqué les suivantes

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.