terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Abstract

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions. Physiological, production, grape quality, and wine quality parameters were evaluated during 2022. The preliminary results obtained show that, under the experimental conditions of the study, all the evaluated parameters varied significantly between genotypes and irrigation treatments. Under rainfed conditions, the new genotypes had suitable yields, all of them showing higher yields than ‘Monastrell’, the reference variety in the area. Regarding phenolic quality under rainfed conditions, MC16 and MC80 exhibited an average total phenol content (TPC) in skin and seeds of 4757 mg Kg grape-1 and 5097 mg Kg grape-1, respectively, significantly higher than that of the parental varieties. In addition, MS104 ripened and was harvested with a very low sugar content (10.3 °Baumé), making it very interesting and suitable for the production of low-alcohol wines in warm areas. These results suggest that the new genotypes could adapt better than the parental ones to the conditions of water scarcity and high temperatures in the area, maintaining suitable yields and high phenolic quality. If these results are confirmed in successive years, these new genotypes could better tolerate the negative effects of water scarcity and high temperatures on productivity and grape and wine quality.

Acknowledgments: The authors thank Carlos V. Padilla, Eliseo Salmerón and Isidro Hita for crop health control. This work was financed by the Ministerio de Ciencia e Innovación via project PID2020-119263RR-100.

References

1)  Fraga, H. et al. (2016). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Climatol., 36(1), 1-12, DOI: 10.1002/joc.4325
2)  Ruiz-García, et al. (2018) Nuevas variedades de vid obtenidas en la Región de Murcia. Actas Hortic., 80, 226–229.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Diego José Fernández-López1*, José Ignacio Fernández-Fernández2, Adrián Yepes-Hita1, Celia Martínez-Mora1, Ana Fuentes-Denia1, José Cayetano Gómez-Martínez2, Juan Antonio Bleda-Sánchez2, José Antonio Martínez-Jiménez1, Leonor Ruiz-García1*

1 Molecular Genetic Improvement Team, Instituto Murciano de Investigación y Desarollo Agrario y Medi-oambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain.
2 Oenology and Viticulture Team, Instituto Murciano de Investigación y Desarollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain.

Contact the author*

Keywords

drought, crossbreeding, water status, production, grape quality, wine quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.