terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Abstract

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

The study aims are evaluating the LP, under ambient (Control) and temperature increase (T+) conditions, as agronomical technique that allows the imbalance of sugar and anthocyanins and delaying grapes maturation in cv. Merlot (Valle central, Chile) during two seasons. To achieve this goal tree pruning were made: winter pruning (WP); LP1 (Late pruning at budbreak) and LP2 (at shoots of 2-4 cm). The phenology of the crop was monitored and gas exchange, chlorophyll fluorescence and photosynthetic pigments were determined at key growth stages. At harvest (22±1 ºBrix), anthocyanins and total soluble solids were determined to evaluate the development of maturation.

During two seasons (21-22; 22-23) temperatures produced an earlier harvest in WP. LP1 treatments under control conditions had no effect on harvest date, and LP2 even advanced it. Under T+ conditions, LP1 had the most positive effects, delaying harvest by 5 to 22 days (season depending) and increasing total anthocyanin by 12% under ambient conditions and by 19% at T+. Regarding the effects on gas exchange, temperature significantly reduced photosynthesis in both seasons, but LP had no effect. In conclusion, the delay of sugar accumulation due to LP at budbreak could have a positive effect on anthocyanin concentration, without affecting other parameters such as photosynthesis.

Acknowledgements: This study is part of the project Fondecyt 11200703 (ANID). Thanks to Manuel Gutierrez for his field work and Jose Macias, graduate student.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Article

Authors

C. Salazar-Parra1*, R. Rivera1,2, M. Miranda1, M. Reyes3, C. Peppi1

1Instituto de investigaciones agropecuarias, INIA La Platina.
2Undergraduate student. Facultad de Ciencias. Universidad de Chile.
3Instituto de investigaciones agropecuarias. INIA Raihuen.

Contact the author*

Keywords

temperature, anthocyanins, grapevine, climate change, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].