terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Abstract

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

The study aims are evaluating the LP, under ambient (Control) and temperature increase (T+) conditions, as agronomical technique that allows the imbalance of sugar and anthocyanins and delaying grapes maturation in cv. Merlot (Valle central, Chile) during two seasons. To achieve this goal tree pruning were made: winter pruning (WP); LP1 (Late pruning at budbreak) and LP2 (at shoots of 2-4 cm). The phenology of the crop was monitored and gas exchange, chlorophyll fluorescence and photosynthetic pigments were determined at key growth stages. At harvest (22±1 ºBrix), anthocyanins and total soluble solids were determined to evaluate the development of maturation.

During two seasons (21-22; 22-23) temperatures produced an earlier harvest in WP. LP1 treatments under control conditions had no effect on harvest date, and LP2 even advanced it. Under T+ conditions, LP1 had the most positive effects, delaying harvest by 5 to 22 days (season depending) and increasing total anthocyanin by 12% under ambient conditions and by 19% at T+. Regarding the effects on gas exchange, temperature significantly reduced photosynthesis in both seasons, but LP had no effect. In conclusion, the delay of sugar accumulation due to LP at budbreak could have a positive effect on anthocyanin concentration, without affecting other parameters such as photosynthesis.

Acknowledgements: This study is part of the project Fondecyt 11200703 (ANID). Thanks to Manuel Gutierrez for his field work and Jose Macias, graduate student.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Article

Authors

C. Salazar-Parra1*, R. Rivera1,2, M. Miranda1, M. Reyes3, C. Peppi1

1Instituto de investigaciones agropecuarias, INIA La Platina.
2Undergraduate student. Facultad de Ciencias. Universidad de Chile.
3Instituto de investigaciones agropecuarias. INIA Raihuen.

Contact the author*

Keywords

temperature, anthocyanins, grapevine, climate change, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.