terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Abstract

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

The study aims are evaluating the LP, under ambient (Control) and temperature increase (T+) conditions, as agronomical technique that allows the imbalance of sugar and anthocyanins and delaying grapes maturation in cv. Merlot (Valle central, Chile) during two seasons. To achieve this goal tree pruning were made: winter pruning (WP); LP1 (Late pruning at budbreak) and LP2 (at shoots of 2-4 cm). The phenology of the crop was monitored and gas exchange, chlorophyll fluorescence and photosynthetic pigments were determined at key growth stages. At harvest (22±1 ºBrix), anthocyanins and total soluble solids were determined to evaluate the development of maturation.

During two seasons (21-22; 22-23) temperatures produced an earlier harvest in WP. LP1 treatments under control conditions had no effect on harvest date, and LP2 even advanced it. Under T+ conditions, LP1 had the most positive effects, delaying harvest by 5 to 22 days (season depending) and increasing total anthocyanin by 12% under ambient conditions and by 19% at T+. Regarding the effects on gas exchange, temperature significantly reduced photosynthesis in both seasons, but LP had no effect. In conclusion, the delay of sugar accumulation due to LP at budbreak could have a positive effect on anthocyanin concentration, without affecting other parameters such as photosynthesis.

Acknowledgements: This study is part of the project Fondecyt 11200703 (ANID). Thanks to Manuel Gutierrez for his field work and Jose Macias, graduate student.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Article

Authors

C. Salazar-Parra1*, R. Rivera1,2, M. Miranda1, M. Reyes3, C. Peppi1

1Instituto de investigaciones agropecuarias, INIA La Platina.
2Undergraduate student. Facultad de Ciencias. Universidad de Chile.
3Instituto de investigaciones agropecuarias. INIA Raihuen.

Contact the author*

Keywords

temperature, anthocyanins, grapevine, climate change, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.