terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Abstract

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

The study aims are evaluating the LP, under ambient (Control) and temperature increase (T+) conditions, as agronomical technique that allows the imbalance of sugar and anthocyanins and delaying grapes maturation in cv. Merlot (Valle central, Chile) during two seasons. To achieve this goal tree pruning were made: winter pruning (WP); LP1 (Late pruning at budbreak) and LP2 (at shoots of 2-4 cm). The phenology of the crop was monitored and gas exchange, chlorophyll fluorescence and photosynthetic pigments were determined at key growth stages. At harvest (22±1 ºBrix), anthocyanins and total soluble solids were determined to evaluate the development of maturation.

During two seasons (21-22; 22-23) temperatures produced an earlier harvest in WP. LP1 treatments under control conditions had no effect on harvest date, and LP2 even advanced it. Under T+ conditions, LP1 had the most positive effects, delaying harvest by 5 to 22 days (season depending) and increasing total anthocyanin by 12% under ambient conditions and by 19% at T+. Regarding the effects on gas exchange, temperature significantly reduced photosynthesis in both seasons, but LP had no effect. In conclusion, the delay of sugar accumulation due to LP at budbreak could have a positive effect on anthocyanin concentration, without affecting other parameters such as photosynthesis.

Acknowledgements: This study is part of the project Fondecyt 11200703 (ANID). Thanks to Manuel Gutierrez for his field work and Jose Macias, graduate student.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Article

Authors

C. Salazar-Parra1*, R. Rivera1,2, M. Miranda1, M. Reyes3, C. Peppi1

1Instituto de investigaciones agropecuarias, INIA La Platina.
2Undergraduate student. Facultad de Ciencias. Universidad de Chile.
3Instituto de investigaciones agropecuarias. INIA Raihuen.

Contact the author*

Keywords

temperature, anthocyanins, grapevine, climate change, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.