terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Abstract

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries. We performed weighted gene co-expression network analysis (WGCNA) to investigate the clustering of genes from B. cinerea and other microbes. Apart from B. cinerea, the genes of the most important filamentous fungi and yeasts in our samples showed enrichment mostly in the last phase of noble rot. Among the metabolic pathways identified, we highlighted those that may have an impact on the aroma composition of wines from noble rot grapes. These components could be the basis for further studies of metabolomic interest.

Acknowledgements: This work was financed by the NRDI fund – TKP2021-NKTA-16 – “Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University”

References:

  1. Otto, M., et. al. (2022). Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes.Food Microbiology, 106, 104037., DOI: 10.1016/j.fm.2022.104037
  2. Hegyi, Á. I., et. al. (2022). Metatranscriptomic Analyses Reveal the Functional Role of Botrytis cinerea in Biochemical and Textural Changes during Noble Rot of Grapevines.Journal of Fungi, 8(4), 378., DOI: 10.3390/jof8040378

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Hegyi, Ádám István1,2; Otto, Margot1; Hegyi-Kaló, Júlia1; Cels, Thomas1; Gomba-Tóth, Adrienn1; Golen, Richárd1; Geml, József1,3; Váczy, Kálmán Zoltán1

1 Eszterházy Károly Catholic University, Food and Wine Research Institute 3300 Eger Eszterházy sq. 1. HUNGARY
2 Doctoral School of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, HUNGARY
3 ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, 3300 Eger, HUNGARY

Contact the author*

Keywords

transcriptomics, noble rot, bioinformatics, omics, wine aroma, microbiome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.