terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Abstract

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines. To monitor the impacts of irrigation and leaf position on PSII functionality, MONI/MICRO PAM heads were mounted on the south (polar facing) and north (equatorial facing) sides of the canopy of each vine. Water stress decreased midday stem water potential (SWP) to -1.4 MPa in water-stressed plants, while well-watered plants maintained SWP at -0.8 MPa. Maximum efficiency of PSII (Fv/Fm) decreased by higher exposure to heat and radiation on the northern side, especially when plants were subjected to water stress. Absorbed energy partitioning in PSII differed between northern and southern sides, and it was influenced by irrigation. At midday, leaves on the southern side showed higher photochemical (Y(II)) and lower non-photochemical yield (Y(NPQ)) than northern leaves. Water stress decreased Y(II) and increased Y(NPQ) at midday predominantly on the northern side. During a heatwave, PSII showed an increase in photoinhibition (Y(NO)) in water-stressed plants on the northern side; however, this effect was reversible and persisted only one day following the heatwave and decreased thereafter to a similar rate to that observed in the rest of the canopy. These findings suggest that, in the short-term, irrigation can be tailored to sustain the canopy during heat waves, while in the medium-term, canopy management strategies (such as shade netting) may be needed to maintain leaf function during and following heatwaves.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Walaa Shtai1*, Paul Petrie2, Marcos Bonada3, Massimo Tagliavini1 , Georg Wohlfahrt5, Edwards Everard4

1Free University of Bolzano- Bozen, Italy
2South Australian Research and Development Institute (SARDI), Adelaide, Australia
3Treasury Wine Estates, Adelaide, Australia.
4CSIRO Agriculture and Food, Adelaide, Australia
5University of Innsbruck, Austria

Contact the author*

Keywords

chlorophyll fluorescence, heat stress, water stress, grapevines, energy partitioning, heat dissipation, photoinhibition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.