terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Abstract

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines. To monitor the impacts of irrigation and leaf position on PSII functionality, MONI/MICRO PAM heads were mounted on the south (polar facing) and north (equatorial facing) sides of the canopy of each vine. Water stress decreased midday stem water potential (SWP) to -1.4 MPa in water-stressed plants, while well-watered plants maintained SWP at -0.8 MPa. Maximum efficiency of PSII (Fv/Fm) decreased by higher exposure to heat and radiation on the northern side, especially when plants were subjected to water stress. Absorbed energy partitioning in PSII differed between northern and southern sides, and it was influenced by irrigation. At midday, leaves on the southern side showed higher photochemical (Y(II)) and lower non-photochemical yield (Y(NPQ)) than northern leaves. Water stress decreased Y(II) and increased Y(NPQ) at midday predominantly on the northern side. During a heatwave, PSII showed an increase in photoinhibition (Y(NO)) in water-stressed plants on the northern side; however, this effect was reversible and persisted only one day following the heatwave and decreased thereafter to a similar rate to that observed in the rest of the canopy. These findings suggest that, in the short-term, irrigation can be tailored to sustain the canopy during heat waves, while in the medium-term, canopy management strategies (such as shade netting) may be needed to maintain leaf function during and following heatwaves.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Walaa Shtai1*, Paul Petrie2, Marcos Bonada3, Massimo Tagliavini1 , Georg Wohlfahrt5, Edwards Everard4

1Free University of Bolzano- Bozen, Italy
2South Australian Research and Development Institute (SARDI), Adelaide, Australia
3Treasury Wine Estates, Adelaide, Australia.
4CSIRO Agriculture and Food, Adelaide, Australia
5University of Innsbruck, Austria

Contact the author*

Keywords

chlorophyll fluorescence, heat stress, water stress, grapevines, energy partitioning, heat dissipation, photoinhibition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.