terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Abstract

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines. To monitor the impacts of irrigation and leaf position on PSII functionality, MONI/MICRO PAM heads were mounted on the south (polar facing) and north (equatorial facing) sides of the canopy of each vine. Water stress decreased midday stem water potential (SWP) to -1.4 MPa in water-stressed plants, while well-watered plants maintained SWP at -0.8 MPa. Maximum efficiency of PSII (Fv/Fm) decreased by higher exposure to heat and radiation on the northern side, especially when plants were subjected to water stress. Absorbed energy partitioning in PSII differed between northern and southern sides, and it was influenced by irrigation. At midday, leaves on the southern side showed higher photochemical (Y(II)) and lower non-photochemical yield (Y(NPQ)) than northern leaves. Water stress decreased Y(II) and increased Y(NPQ) at midday predominantly on the northern side. During a heatwave, PSII showed an increase in photoinhibition (Y(NO)) in water-stressed plants on the northern side; however, this effect was reversible and persisted only one day following the heatwave and decreased thereafter to a similar rate to that observed in the rest of the canopy. These findings suggest that, in the short-term, irrigation can be tailored to sustain the canopy during heat waves, while in the medium-term, canopy management strategies (such as shade netting) may be needed to maintain leaf function during and following heatwaves.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Walaa Shtai1*, Paul Petrie2, Marcos Bonada3, Massimo Tagliavini1 , Georg Wohlfahrt5, Edwards Everard4

1Free University of Bolzano- Bozen, Italy
2South Australian Research and Development Institute (SARDI), Adelaide, Australia
3Treasury Wine Estates, Adelaide, Australia.
4CSIRO Agriculture and Food, Adelaide, Australia
5University of Innsbruck, Austria

Contact the author*

Keywords

chlorophyll fluorescence, heat stress, water stress, grapevines, energy partitioning, heat dissipation, photoinhibition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.