terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Abstract

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

We currently investigate molecularly imprinted polymers (MIPs) as a dedicated tool to efficiently extract polyphenols from GSE with high dosage, controlled composition and improved bioavailability. The materials will be tailored such that either a selection of already known and potent polyphenols will be extracted, or more generically, that the majority of GSE containing polyphenols will be extracted in a rather untargeted approach. The same MIPs based on biodegradeable polymers will be used as innovative pharmaceutical formulations / drug delivery matrices packaging the polyphenols extracted from grape by-products, which serve as a resource of bioactive compounds with the distinct circular economic effect of reducing winemaking environmental impact.

Acknowledgements: We would like to thank the International Ambition Pack from La Région Auvergne-Rhône-Alpes for support of this project.

1)  A. Molinelli et al., Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine, Journal of Agricultural and Food Chemistry, 50 (7), 1804–1808 (2002), DOI: 10.1021/jf011213q

2)  S. Rajpal et al., An in silico predictive method to select multimonomer combinations for peptide imprinting, J. Mater. Chem. B 10, 6618-6626 (2022), DOI: https://doi.org/10.1039/D2TB00418F

3)  A. Kotyrba et al., Development of Silica Nanoparticle Supported Imprinted Polymers for Selective Lysozyme Recognition, Nanomaterials 11(12), 3287 (2021), DOI: https://doi.org/10.3390/nano11123287

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Boris Mizaikoff1,2*, Anika Kotyrba1, Mélina Begou2

1Ulm University, Institute of Analytical and Bioanalytical Chemistry, Ulm, Germany
2Hahn-Schickard, Ulm, Germany
3Université Clermont Auvergne, Department of Pharmacology, Clermont, France

Contact the author*

Keywords

molecularly imprinted polymers, polyphenols, grape seed extract, multiple sclerosis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.