terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Abstract

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

We currently investigate molecularly imprinted polymers (MIPs) as a dedicated tool to efficiently extract polyphenols from GSE with high dosage, controlled composition and improved bioavailability. The materials will be tailored such that either a selection of already known and potent polyphenols will be extracted, or more generically, that the majority of GSE containing polyphenols will be extracted in a rather untargeted approach. The same MIPs based on biodegradeable polymers will be used as innovative pharmaceutical formulations / drug delivery matrices packaging the polyphenols extracted from grape by-products, which serve as a resource of bioactive compounds with the distinct circular economic effect of reducing winemaking environmental impact.

Acknowledgements: We would like to thank the International Ambition Pack from La Région Auvergne-Rhône-Alpes for support of this project.

1)  A. Molinelli et al., Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine, Journal of Agricultural and Food Chemistry, 50 (7), 1804–1808 (2002), DOI: 10.1021/jf011213q

2)  S. Rajpal et al., An in silico predictive method to select multimonomer combinations for peptide imprinting, J. Mater. Chem. B 10, 6618-6626 (2022), DOI: https://doi.org/10.1039/D2TB00418F

3)  A. Kotyrba et al., Development of Silica Nanoparticle Supported Imprinted Polymers for Selective Lysozyme Recognition, Nanomaterials 11(12), 3287 (2021), DOI: https://doi.org/10.3390/nano11123287

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Boris Mizaikoff1,2*, Anika Kotyrba1, Mélina Begou2

1Ulm University, Institute of Analytical and Bioanalytical Chemistry, Ulm, Germany
2Hahn-Schickard, Ulm, Germany
3Université Clermont Auvergne, Department of Pharmacology, Clermont, France

Contact the author*

Keywords

molecularly imprinted polymers, polyphenols, grape seed extract, multiple sclerosis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.