terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Abstract

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

We currently investigate molecularly imprinted polymers (MIPs) as a dedicated tool to efficiently extract polyphenols from GSE with high dosage, controlled composition and improved bioavailability. The materials will be tailored such that either a selection of already known and potent polyphenols will be extracted, or more generically, that the majority of GSE containing polyphenols will be extracted in a rather untargeted approach. The same MIPs based on biodegradeable polymers will be used as innovative pharmaceutical formulations / drug delivery matrices packaging the polyphenols extracted from grape by-products, which serve as a resource of bioactive compounds with the distinct circular economic effect of reducing winemaking environmental impact.

Acknowledgements: We would like to thank the International Ambition Pack from La Région Auvergne-Rhône-Alpes for support of this project.

1)  A. Molinelli et al., Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine, Journal of Agricultural and Food Chemistry, 50 (7), 1804–1808 (2002), DOI: 10.1021/jf011213q

2)  S. Rajpal et al., An in silico predictive method to select multimonomer combinations for peptide imprinting, J. Mater. Chem. B 10, 6618-6626 (2022), DOI: https://doi.org/10.1039/D2TB00418F

3)  A. Kotyrba et al., Development of Silica Nanoparticle Supported Imprinted Polymers for Selective Lysozyme Recognition, Nanomaterials 11(12), 3287 (2021), DOI: https://doi.org/10.3390/nano11123287

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Boris Mizaikoff1,2*, Anika Kotyrba1, Mélina Begou2

1Ulm University, Institute of Analytical and Bioanalytical Chemistry, Ulm, Germany
2Hahn-Schickard, Ulm, Germany
3Université Clermont Auvergne, Department of Pharmacology, Clermont, France

Contact the author*

Keywords

molecularly imprinted polymers, polyphenols, grape seed extract, multiple sclerosis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.