terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Abstract

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.

The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive. Most of the works published so far, have focused on untargeted and/or targeted metabolite accumulations in a sample pool of an infected tissue. However, with these approaches it is not possible to obtain knowledge about the actual localization of the accumulated metabolites nor their specific sites of action.

Mass spectrometry imaging (MSI) analytical techniques enable to visualize and map the spatial distribution of metabolites within plant tissues allowing to a better understanding of metabolite biosynthesis, localization and functions[1].

We have studied the spatial distribution of different metabolites in grapevine leaves infected with different pathogens, using Matrix Assisted Laser Desorption Ionization-MSI. Our results demonstrated that in grapevine-P. viticola interaction, putatively identified sucrose presented a higher accumulation mainly in the veins of the leaves, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola[2]. Also, in grapevine leaves infected with B. cinerea, our results show that putatively identified stilbene phytoalexins accumulate in areas close to infection sites, with a high molecular diversity as evidenced by the detection of various oligomeric forms[3].

Our work opens new doors for the scientific community to gain a comprehensive understanding of the dynamics and variations of metabolite profiles in grapevine organs, at different developmental stages and under various stress conditions. This knowledge is crucial for elucidating the role of specific metabolites in grapevine defense mechanisms, identify specific regions of high or low metabolite production, which can contribute to targeted breeding to enhance disease resistance traits and impact grapevine productivity and quality.

Acknowledgements: Work funded by FCT-Portugal – research contract 2022.07433.CEECIND.

References:

  1. Maia M. et al. (2022). Molecular Localization of Phytoalexins at the Micron Scale: Towards a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 70, 30, 9243–9245, DOI 10.1021/acs.jafc.2c04208
  2. Maia M. et al. (2022) Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Front. Plant Sci. 13:1012636, DOI 10.3389/fpls.2022.1012636
  3. Maia M. et al. (Submitted) Profiling and localization of stilbene phytoalexins revealed by MALDI-MSI during the grapevine-Botrytis cinerea J. Agric. Food Chem.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marisa Maia1,2,3*, Aziz Aziz4, Philippe Jeandet4, Andreia Figueiredo1,2, Vincent Carré3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
3LCP-A2MC, Université de Lorraine, Metz, France
4RIBP, USC INRAE 1488, University of Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry Imaging, metabolomics, grapevine-pathogen interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.