terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Abstract

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.

The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive. Most of the works published so far, have focused on untargeted and/or targeted metabolite accumulations in a sample pool of an infected tissue. However, with these approaches it is not possible to obtain knowledge about the actual localization of the accumulated metabolites nor their specific sites of action.

Mass spectrometry imaging (MSI) analytical techniques enable to visualize and map the spatial distribution of metabolites within plant tissues allowing to a better understanding of metabolite biosynthesis, localization and functions[1].

We have studied the spatial distribution of different metabolites in grapevine leaves infected with different pathogens, using Matrix Assisted Laser Desorption Ionization-MSI. Our results demonstrated that in grapevine-P. viticola interaction, putatively identified sucrose presented a higher accumulation mainly in the veins of the leaves, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola[2]. Also, in grapevine leaves infected with B. cinerea, our results show that putatively identified stilbene phytoalexins accumulate in areas close to infection sites, with a high molecular diversity as evidenced by the detection of various oligomeric forms[3].

Our work opens new doors for the scientific community to gain a comprehensive understanding of the dynamics and variations of metabolite profiles in grapevine organs, at different developmental stages and under various stress conditions. This knowledge is crucial for elucidating the role of specific metabolites in grapevine defense mechanisms, identify specific regions of high or low metabolite production, which can contribute to targeted breeding to enhance disease resistance traits and impact grapevine productivity and quality.

Acknowledgements: Work funded by FCT-Portugal – research contract 2022.07433.CEECIND.

References:

  1. Maia M. et al. (2022). Molecular Localization of Phytoalexins at the Micron Scale: Towards a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 70, 30, 9243–9245, DOI 10.1021/acs.jafc.2c04208
  2. Maia M. et al. (2022) Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Front. Plant Sci. 13:1012636, DOI 10.3389/fpls.2022.1012636
  3. Maia M. et al. (Submitted) Profiling and localization of stilbene phytoalexins revealed by MALDI-MSI during the grapevine-Botrytis cinerea J. Agric. Food Chem.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marisa Maia1,2,3*, Aziz Aziz4, Philippe Jeandet4, Andreia Figueiredo1,2, Vincent Carré3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
3LCP-A2MC, Université de Lorraine, Metz, France
4RIBP, USC INRAE 1488, University of Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry Imaging, metabolomics, grapevine-pathogen interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.