terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Abstract

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.

The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive. Most of the works published so far, have focused on untargeted and/or targeted metabolite accumulations in a sample pool of an infected tissue. However, with these approaches it is not possible to obtain knowledge about the actual localization of the accumulated metabolites nor their specific sites of action.

Mass spectrometry imaging (MSI) analytical techniques enable to visualize and map the spatial distribution of metabolites within plant tissues allowing to a better understanding of metabolite biosynthesis, localization and functions[1].

We have studied the spatial distribution of different metabolites in grapevine leaves infected with different pathogens, using Matrix Assisted Laser Desorption Ionization-MSI. Our results demonstrated that in grapevine-P. viticola interaction, putatively identified sucrose presented a higher accumulation mainly in the veins of the leaves, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola[2]. Also, in grapevine leaves infected with B. cinerea, our results show that putatively identified stilbene phytoalexins accumulate in areas close to infection sites, with a high molecular diversity as evidenced by the detection of various oligomeric forms[3].

Our work opens new doors for the scientific community to gain a comprehensive understanding of the dynamics and variations of metabolite profiles in grapevine organs, at different developmental stages and under various stress conditions. This knowledge is crucial for elucidating the role of specific metabolites in grapevine defense mechanisms, identify specific regions of high or low metabolite production, which can contribute to targeted breeding to enhance disease resistance traits and impact grapevine productivity and quality.

Acknowledgements: Work funded by FCT-Portugal – research contract 2022.07433.CEECIND.

References:

  1. Maia M. et al. (2022). Molecular Localization of Phytoalexins at the Micron Scale: Towards a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 70, 30, 9243–9245, DOI 10.1021/acs.jafc.2c04208
  2. Maia M. et al. (2022) Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Front. Plant Sci. 13:1012636, DOI 10.3389/fpls.2022.1012636
  3. Maia M. et al. (Submitted) Profiling and localization of stilbene phytoalexins revealed by MALDI-MSI during the grapevine-Botrytis cinerea J. Agric. Food Chem.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marisa Maia1,2,3*, Aziz Aziz4, Philippe Jeandet4, Andreia Figueiredo1,2, Vincent Carré3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
3LCP-A2MC, Université de Lorraine, Metz, France
4RIBP, USC INRAE 1488, University of Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry Imaging, metabolomics, grapevine-pathogen interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.