terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Abstract

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.

The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive. Most of the works published so far, have focused on untargeted and/or targeted metabolite accumulations in a sample pool of an infected tissue. However, with these approaches it is not possible to obtain knowledge about the actual localization of the accumulated metabolites nor their specific sites of action.

Mass spectrometry imaging (MSI) analytical techniques enable to visualize and map the spatial distribution of metabolites within plant tissues allowing to a better understanding of metabolite biosynthesis, localization and functions[1].

We have studied the spatial distribution of different metabolites in grapevine leaves infected with different pathogens, using Matrix Assisted Laser Desorption Ionization-MSI. Our results demonstrated that in grapevine-P. viticola interaction, putatively identified sucrose presented a higher accumulation mainly in the veins of the leaves, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola[2]. Also, in grapevine leaves infected with B. cinerea, our results show that putatively identified stilbene phytoalexins accumulate in areas close to infection sites, with a high molecular diversity as evidenced by the detection of various oligomeric forms[3].

Our work opens new doors for the scientific community to gain a comprehensive understanding of the dynamics and variations of metabolite profiles in grapevine organs, at different developmental stages and under various stress conditions. This knowledge is crucial for elucidating the role of specific metabolites in grapevine defense mechanisms, identify specific regions of high or low metabolite production, which can contribute to targeted breeding to enhance disease resistance traits and impact grapevine productivity and quality.

Acknowledgements: Work funded by FCT-Portugal – research contract 2022.07433.CEECIND.

References:

  1. Maia M. et al. (2022). Molecular Localization of Phytoalexins at the Micron Scale: Towards a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 70, 30, 9243–9245, DOI 10.1021/acs.jafc.2c04208
  2. Maia M. et al. (2022) Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Front. Plant Sci. 13:1012636, DOI 10.3389/fpls.2022.1012636
  3. Maia M. et al. (Submitted) Profiling and localization of stilbene phytoalexins revealed by MALDI-MSI during the grapevine-Botrytis cinerea J. Agric. Food Chem.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marisa Maia1,2,3*, Aziz Aziz4, Philippe Jeandet4, Andreia Figueiredo1,2, Vincent Carré3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
3LCP-A2MC, Université de Lorraine, Metz, France
4RIBP, USC INRAE 1488, University of Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry Imaging, metabolomics, grapevine-pathogen interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.