terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Abstract

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.

The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive. Most of the works published so far, have focused on untargeted and/or targeted metabolite accumulations in a sample pool of an infected tissue. However, with these approaches it is not possible to obtain knowledge about the actual localization of the accumulated metabolites nor their specific sites of action.

Mass spectrometry imaging (MSI) analytical techniques enable to visualize and map the spatial distribution of metabolites within plant tissues allowing to a better understanding of metabolite biosynthesis, localization and functions[1].

We have studied the spatial distribution of different metabolites in grapevine leaves infected with different pathogens, using Matrix Assisted Laser Desorption Ionization-MSI. Our results demonstrated that in grapevine-P. viticola interaction, putatively identified sucrose presented a higher accumulation mainly in the veins of the leaves, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola[2]. Also, in grapevine leaves infected with B. cinerea, our results show that putatively identified stilbene phytoalexins accumulate in areas close to infection sites, with a high molecular diversity as evidenced by the detection of various oligomeric forms[3].

Our work opens new doors for the scientific community to gain a comprehensive understanding of the dynamics and variations of metabolite profiles in grapevine organs, at different developmental stages and under various stress conditions. This knowledge is crucial for elucidating the role of specific metabolites in grapevine defense mechanisms, identify specific regions of high or low metabolite production, which can contribute to targeted breeding to enhance disease resistance traits and impact grapevine productivity and quality.

Acknowledgements: Work funded by FCT-Portugal – research contract 2022.07433.CEECIND.

References:

  1. Maia M. et al. (2022). Molecular Localization of Phytoalexins at the Micron Scale: Towards a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. J. Agric. Food Chem. 70, 30, 9243–9245, DOI 10.1021/acs.jafc.2c04208
  2. Maia M. et al. (2022) Grapevine Leaf MALDI-MS Imaging Reveals the Localisation of a Putatively Identified Sucrose Metabolite Associated to Plasmopara Viticola Front. Plant Sci. 13:1012636, DOI 10.3389/fpls.2022.1012636
  3. Maia M. et al. (Submitted) Profiling and localization of stilbene phytoalexins revealed by MALDI-MSI during the grapevine-Botrytis cinerea J. Agric. Food Chem.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marisa Maia1,2,3*, Aziz Aziz4, Philippe Jeandet4, Andreia Figueiredo1,2, Vincent Carré3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
3LCP-A2MC, Université de Lorraine, Metz, France
4RIBP, USC INRAE 1488, University of Reims Champagne-Ardenne, Reims, France

Contact the author*

Keywords

Mass Spectrometry Imaging, metabolomics, grapevine-pathogen interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.