terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Abstract

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution. This work focuses on the identification of wine intake biomarkers in 24-h urine samples of free-living volunteers using untargeted metabolomics approach. Two groups were included: (i) volunteers with daily and moderate wine consumption, and (ii) control group, volunteers who never drink wine. Urine samples (24-h) were analysed by liquid chromatography coupled with high-resolution mass spectrometry (UPLC-QToF), using two stationary phases (RP and HILIC) to separate metabolites of different polarities, moreover all the analyses were done in both positive and negative ionization modes. The most significant compounds highlighted after performing an OPLS-DA were tentatively identified based on their accurate masses and spectra information. Different metabolites associated with wine intake have been tentatively proposed, such as aminoacids and peptides, and different phenol metabolites.

Acknowledgements: MCIN / AEI /10.13039/501100011033 and the European Union NextGenerationEU/PRTR through the project PID2019-108851RB-C22. M.J-S. thanks University of La Rioja for her PostDoc grant financed by the European Union-NextGenerationEU.

References:

  1. Hrelia S. et al. (2023) Moderate Wine Consumption and Health: A Narrative Review. Nutrients, 15: 175-200, DOI 10.3390/nu15010175.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jiménez-Salcedo M.1,2*, Manzano JI.1, Pérez-Matute, P.3, Motilva MJ. 1

1 Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño (España)
2 Universidad de La Rioja, 26006 Logroño (España)
3 Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit. 26006 Logroño (España)

Contact the author*

Keywords

untargeted metabolomics, wine, biomarker, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].