terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Abstract

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities. Grapevine leaves being a disposable byproduct in viticulture, their potential valorization as a source of polyphenols is a topic of interest.

Our objective was to compare the diversity of grapevine leaves composition by screening qualitatively and quantitatively the polyphenol content in leaves of 50 cultivars grown in the same field of an experimental collection at Bordeaux INRAe. Fresh leaves were collected at the same period in summer, freeze-dried, ground to a fine powder and polyphenols were extracted twice with combination of organic solvents (100% and 70% methanol). A targeted HPLC-MS/MS approach was used for the quantification with available standards of 60 different polyphenols.

The results showed high variability in polyphenols content. Nevertheless, caftaric acid and quercetin 3-glucuronide were the major compounds detected in all leaves. Flavanols, and more particularly the ratio catechin/epicatechin, could be explored as markers to determine leaf cultivar, ranging from 0.5 to 42. Stilbenes were minor compounds in all leaves, found mainly in the forms of trans- and cis-piceid. Minor presence of resveratrol and its oligomers was assessed by HPLC-HRMS/MS.

Acknowledgements: The authors wish to thank the UE Viticole and Louis Bordenave for management of the experimental vineyard and the support of Bordeaux Metabolome

 

References:

(1) Lemaitre-Guillier et al (2021) VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine. https://doi.org/10.3390/molecules26144258

(2) Goufo et al (2020). A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. doi: 10.3390/antiox9050398

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alan Jamain1, Margot Larose1, Andreu Mairata2, Manon Delapena1, Antonio Palos-Pinto1, Céline Franc1, Maria Lafargue3, Ghislaine Hilbert-Masson3, Stéphanie Cluzet1, Josep Valls Fonayet1

1Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (La Rioja) ESPAÑA
3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Vitis vinifera, Quercetin, Caftaric, Byproducts

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.