terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Abstract

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities. Grapevine leaves being a disposable byproduct in viticulture, their potential valorization as a source of polyphenols is a topic of interest.

Our objective was to compare the diversity of grapevine leaves composition by screening qualitatively and quantitatively the polyphenol content in leaves of 50 cultivars grown in the same field of an experimental collection at Bordeaux INRAe. Fresh leaves were collected at the same period in summer, freeze-dried, ground to a fine powder and polyphenols were extracted twice with combination of organic solvents (100% and 70% methanol). A targeted HPLC-MS/MS approach was used for the quantification with available standards of 60 different polyphenols.

The results showed high variability in polyphenols content. Nevertheless, caftaric acid and quercetin 3-glucuronide were the major compounds detected in all leaves. Flavanols, and more particularly the ratio catechin/epicatechin, could be explored as markers to determine leaf cultivar, ranging from 0.5 to 42. Stilbenes were minor compounds in all leaves, found mainly in the forms of trans- and cis-piceid. Minor presence of resveratrol and its oligomers was assessed by HPLC-HRMS/MS.

Acknowledgements: The authors wish to thank the UE Viticole and Louis Bordenave for management of the experimental vineyard and the support of Bordeaux Metabolome

 

References:

(1) Lemaitre-Guillier et al (2021) VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine. https://doi.org/10.3390/molecules26144258

(2) Goufo et al (2020). A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. doi: 10.3390/antiox9050398

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alan Jamain1, Margot Larose1, Andreu Mairata2, Manon Delapena1, Antonio Palos-Pinto1, Céline Franc1, Maria Lafargue3, Ghislaine Hilbert-Masson3, Stéphanie Cluzet1, Josep Valls Fonayet1

1Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (La Rioja) ESPAÑA
3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Vitis vinifera, Quercetin, Caftaric, Byproducts

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.