terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Abstract

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities. Grapevine leaves being a disposable byproduct in viticulture, their potential valorization as a source of polyphenols is a topic of interest.

Our objective was to compare the diversity of grapevine leaves composition by screening qualitatively and quantitatively the polyphenol content in leaves of 50 cultivars grown in the same field of an experimental collection at Bordeaux INRAe. Fresh leaves were collected at the same period in summer, freeze-dried, ground to a fine powder and polyphenols were extracted twice with combination of organic solvents (100% and 70% methanol). A targeted HPLC-MS/MS approach was used for the quantification with available standards of 60 different polyphenols.

The results showed high variability in polyphenols content. Nevertheless, caftaric acid and quercetin 3-glucuronide were the major compounds detected in all leaves. Flavanols, and more particularly the ratio catechin/epicatechin, could be explored as markers to determine leaf cultivar, ranging from 0.5 to 42. Stilbenes were minor compounds in all leaves, found mainly in the forms of trans- and cis-piceid. Minor presence of resveratrol and its oligomers was assessed by HPLC-HRMS/MS.

Acknowledgements: The authors wish to thank the UE Viticole and Louis Bordenave for management of the experimental vineyard and the support of Bordeaux Metabolome

 

References:

(1) Lemaitre-Guillier et al (2021) VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine. https://doi.org/10.3390/molecules26144258

(2) Goufo et al (2020). A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. doi: 10.3390/antiox9050398

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alan Jamain1, Margot Larose1, Andreu Mairata2, Manon Delapena1, Antonio Palos-Pinto1, Céline Franc1, Maria Lafargue3, Ghislaine Hilbert-Masson3, Stéphanie Cluzet1, Josep Valls Fonayet1

1Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (La Rioja) ESPAÑA
3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Vitis vinifera, Quercetin, Caftaric, Byproducts

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.