terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Abstract

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities. Grapevine leaves being a disposable byproduct in viticulture, their potential valorization as a source of polyphenols is a topic of interest.

Our objective was to compare the diversity of grapevine leaves composition by screening qualitatively and quantitatively the polyphenol content in leaves of 50 cultivars grown in the same field of an experimental collection at Bordeaux INRAe. Fresh leaves were collected at the same period in summer, freeze-dried, ground to a fine powder and polyphenols were extracted twice with combination of organic solvents (100% and 70% methanol). A targeted HPLC-MS/MS approach was used for the quantification with available standards of 60 different polyphenols.

The results showed high variability in polyphenols content. Nevertheless, caftaric acid and quercetin 3-glucuronide were the major compounds detected in all leaves. Flavanols, and more particularly the ratio catechin/epicatechin, could be explored as markers to determine leaf cultivar, ranging from 0.5 to 42. Stilbenes were minor compounds in all leaves, found mainly in the forms of trans- and cis-piceid. Minor presence of resveratrol and its oligomers was assessed by HPLC-HRMS/MS.

Acknowledgements: The authors wish to thank the UE Viticole and Louis Bordenave for management of the experimental vineyard and the support of Bordeaux Metabolome

 

References:

(1) Lemaitre-Guillier et al (2021) VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine. https://doi.org/10.3390/molecules26144258

(2) Goufo et al (2020). A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. doi: 10.3390/antiox9050398

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alan Jamain1, Margot Larose1, Andreu Mairata2, Manon Delapena1, Antonio Palos-Pinto1, Céline Franc1, Maria Lafargue3, Ghislaine Hilbert-Masson3, Stéphanie Cluzet1, Josep Valls Fonayet1

1Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (La Rioja) ESPAÑA
3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Vitis vinifera, Quercetin, Caftaric, Byproducts

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.